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Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools
in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena
such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and ap-
proximate theories have been developed for bundles with various geometries and fiber load-sharing mecha-
nisms, but numerical verification has been hampered by severe computational demands in larger bundles. To
gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified
models typically assume either equal load shaflBgS) among survivors, or local load sharifigLS) where
a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved
exactly or asymptotically in increasing bundle sikg yet still capture the essence of failure in real materials.

The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following
a power law in its load level with breakdown exponentSurviving fibers under fixed loads have remaining
lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and
new computational algorithms that greatly increase the bundle sizes that can be treated in large replications
(e.g., one million fibers in thousands of realizatiprie particular we develop an algorithm that adapts several
concepts and methods that are well-known among computer scientists, but relatively unknown among physi-
cists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various
regimes ofp that yield drastically different behavior d¢ increases. For 12p=<1, ELS and LLS have
remarkably similar behaviofthey have identical lifetime distributions at=1) with approximate Gaussian
bundle lifetime statistics and a finite limiting mean. For 1 this Gaussian behavior also applies to ELS,
whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic
elements derived from critical cluster formation. Ferp<1/2, ELS and LLS again behave similarly, but the
bundle lifetimes are dominated by a few long-lived fibers, and show characteristics of strongest link, extreme
value distributions, which apply exactly ©o=0.
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[. INTRODUCTION and failure configurations, which has proven to be decep-
tively difficult. Behavior is rarely captured by mean field
approaches that otherwise work well in studying transport
Statistical aspects of fracture processes in heterogeneoysd percolation determined properties.
materials have received increasing attention over the past one approach to modeling such detail has been to develop
two decades, not only because of their richness in physicajiscrete network or lattice models in various dimensions,
and mathematical phenomena, but also because of the pOSWhere the geometry of the |atti((bexag0na|, square, Cubic]
bility of designing material microstructures that produceetc), the load redistribution from failed to surviving ele-
highly reliable components. Such models have also been ghents, and the probability model for element failure must be
interest in geophysical settings to explain earthquake behagpecified. Time dependencmcluding load-history effecis
ior. While much attention has been devoted to static or fasttypically enters through the element failure model, but it also
fracture strength, where material elements are assumed timean appear through the load redistribution model. The result-
independent, models describing creep-rupture and fatiguimg breakdown behavior, whether localized or dispersed, is
lifetime are perhaps even more important. In both cases, imstrongly influenced by the variability built into the element
portant issues are flaw character and interactions durinfpilure model and the intensity of stress concentration occur-
breakdown, dispersed versus localized damage evolution, thing in load redistribution. Subtle changes in parameter val-
associated forms of ultimate strength and lifetime distribu-ues can lead to dramatic changes in breakdown statistics.
tions (especially lower-tail behavi@grand size or scale ef- The earliest and simplest models appearing in the litera-
fects. Building good theoretical models has proven straightture are fiber bundle models. In the case of fast fracture, the
forward, but analyzing them has required delving intoclassic work is that of Danielgl] on the strength of simple
statistical details of the interaction of various flaw featuresfiber bundles under equal load shariflgLS) among non-

A. Background
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failed fibers. A key result from a highly nontrivial analysis is sharing being quite similar to the shear-lag mod2ig. The
that the strength is asymptotically Gaussian with variabilitystrength of the lattice is the largest voltage gradient that the
decreasing inversely as the square-root of the number of fiaetwork can sustain before transverse propagation by a wan-
bers. More realistic material failure models have often asdering cracklike cluster of burnt fuses.
sumed a chain-of-bundles structuf2—4], where bundle Despite their simplicity and knowledge from percolation
length is a characteristic length of fiber load transfer andheory, these networks have proven to be deceptively diffi-
material strength is determined by the weakest bundle. Theult to analyze. Monte Carlo simulations on sample fuse net-
resulting strength follows a double-exponential, extremeworks have been carried o{23-25 to empirically deter-
value distribution associated with Gaussian distributed linksmine the distributions of the critical voltage gradient
In the case of time-dependent breakdown, early work oristrength that generates a catastrophic cluster. Because of
the lifetime of simple fiber bundles under ELS and underthe computational demands, results have been generated only
steady load was carried out by Colem#&a-7], with subse-  for relatively small lattices up to about 28@00. Neverthe-
quent generalizations by Phoeni}8,9]. Corresponding less the critical voltage gradient was seen to decrease in-
chain-of-bundles versions were also develof#®6]. The re-  versely as a power of the logarithm of the network size with
sulting lifetime distributions are similar in form to the static no apparent positive lower bound.
case(with time replacing stregs Though analytically trac- To explain this size dependence and observed shape of
table, these dispersed failure “mean field” models are morehe breakdown voltage distributions, Duxbury and co-
applicable to the strength of weakly bonded, fibrous materiworkers[24,25 considered the effects of defect clusters in a
als than to tightly bonded materials with elastic fiber loadlarge lattice in the form of isolated contiguous transverse
transfer. rows of missing fuse elements, focusing on the current en-
Study of the failure of fiber-reinforced composites with hancement at the row tips. Considering the statistics of the
strong, well-bonded, elastic matrices has led to anothelargest critical defect cluster, namely a transverse slit or
branch of network models, where the load sharing is morécrack,” they appealed to the statistical theory of extremes,
localized [10-17, though still within a chain-of-bundles and determined approximately the distribution function for
framework. In the case of static strendftD—14), fiber ele- the normalized breakdown voltage for smgll They ob-
ments are often assumed to follow a Weibull distributiontained a particular double exponential form with dependence
[18], but failed elements are assumed to redistribute theion network size. Their results were supported by Monte
loads locally onto nearby unfailed neighbors, increasing theiCarlo simulations on networks up to 20@00 in size[24].
probabilities of failure and thus the likelihood of a cata- In elastic spring networks with element breakdown struc-
strophic cascade. Rendering these models analytically trature analogous to the random fuse networks above, the gen-
table has required highly idealized assumptions in the forneral size scalings and distributional forms above have not
of “load-sharing rules” on the local fiber load redistribution always been apparent from simulatiof28]. Various con-
mechanism. One such model, called local load sharinginuous distributions for element strength have also been
(LLS), assumes that the loads of failed fibers are shifted inused[28]. Some of these forms appeared to yield scalings
equal portions onto the nearest flanking survivors. For planasimilar to those in percolation, rather than as described above
versions under LLS with one-dimensional bundle structurefor the random fuse networks. Hansetnal.[29] argued that,
various recursivg13,14 and asymptotic method42] have for p above the percolation threshold, rescaling through a
been used with success in the case of static strength. Verenormalization argument leads to the disappearance of dis-
sions with time-dependent breakdown of fibers have alsorder as the effective value qf, defined at a given scale
been developefll3—17. A more realistic form of localized converges to unity as the network scale grows large. Thus
load-sharing is based on shear-lag models after Hedgepesiuch models were thought to be asymptotically equivalent to
[19-21], and is less severe than LLS with some load shifteda disorderless system with a finite average strength in an
to more distant neighbors. Recent progress on static strengthfinite lattice limit, much like ELS fiber bundle models.
versions of such models is summarized in a review article byPerhaps the main origin of controversy over the particular
Phoenix and Beyerleif22]. form of the size scaling is that simulations covering many
Network or lattice models of material failure have also orders of magnitude in sample dimensions are necessary to
received attention in the statistical physics literature, particuarrive at definitive conclusions. In most cases, such sizes
larly in connection to percolation theory. Because of itshave been inaccessible by Monte Carlo simulation alone as
strong relationship to mechanical failure, conductivity break-attices approaching 500500 in size have rapidly become
down in random fuse networks has been studied extensivelypo demanding computationally. Also, subtle dependencies
[23—264. Such models often consider a planar, square latticen the form of the distribution for element strength were not
of finite size where the conducting elements are initiallyfully understood. Both are important issues in the present
fuses with probabilityp or insulators with probabilityg=1 paper.
—p, assumptions typical of percolation models. The fuses Regardless of their viewpoints, many investigators have
initially have identical breakdown voltage,, and thus, the turned to rigorous study of idealized, one-dimensional mod-
distribution for element strength is simple and discrete. Aels [30-34 in an attempt to put approximate analyses and
voltage gradient is applied along one axis, and calculation ointerpretations from simulations of more complex networks
the currents in all the intact fuses is done through numericabn firmer ground. In the case of static strength, such models,
solution of Kirchhoff's laws with the resulting localized load which are often variations on the LLS models of Harlow and
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Phoenix[10,11,3Q, are analytically solvable, rich in behav- the duration of fracture activity when the population of
ior, and qualitatively show many features seen in simula<cracks is dilute; rather the precursory behavior should be
tions. In most cases, results in LLS fiber bundle models supscaled relative to the time of failure of the entire system. To
port the logarithmic size scaling mentioned above.some extent this is confirmed in the work of Curtin and
Generally, such results depend on the load-sharing schenmeworkers[41,42. What is also seen, however, is that the
(LLS versus EL$ as well as on the assumed form of the effect of interactions depends strongly on the value of the
distribution for element failure. Asymptotic analysis coupledbreakdown exponenp and the size of the system. Small
to Monte Carlo simulation has led to improved forms of systems show dispersed ELS-like behavior regardless of the
material strength distributions in recent wd@?,35,34. value of p. For larger systems, however, divergence from
In localized load-sharing settings involving time- g| S-|ike behavior eventually occurs fpe=2 as interactions

dependent breakdown of elements, some early work on lajsjay a more subdued role and failure becomes dominated by

tice failure was performed by Gotlibt al. [37,38. Curtin 5 single growing crack. The goal of the current paper is to
and Schef39-47 also developed such models, and by de-ghaq further light on these issues.

creasing the value of the power-law breakdown expongnt,
they uncovered transitions from logarithmic scaling to global
percolationlike scaling where the lifetime had a finite limit in
network size. Interesting power-law behavior has been ob- In this paper we study in detail the one-dimensional
served by Hansesnt al. [43], and Rouxet al. [44] have re- bundle model of time-dependent failure under LLS. The
corded some insights into the subtleties of such problems. probability model for fiber element breakdown is a power-
Subtle scalings and transitions have also been noticed iw hazard rate model in terms of an expongrand with
fiber bundle models with hierarchical load-sharing, as disexponential lifetime features under fixed load. Versions of
cussed in Newmaat al.[45-49. Much of the motivation in  thjs fiber breakdown model have been used in many previous
these models emerged from the need to understand the Sigorks[7-9,13-17,37-44,46,37
tistics of time sequences and magnitudes of earthquakes. Ya- |, sec. 1| we describe the basic bundle model, ELS and
mashita and Knopof(YK) [50] used a deterministic 2D, || g |9ad-sharing assumptions, and the fiber lifetime model.
antiplane continuum mechanics model of stress corrosmq/n Sec. Il we discuss theory for ELS for<Op because it
subcritical crack growth and fusion to simulate earthquak lays a key role in understanding the behavior of LLS for

foreshock behavior. The continuum model corresponds t . .
the LLS fiber bundle abstraction. The subcritical crack <p=1.We discuss the special cgse 1 where ELS and

growth rate model corresponds to the power-law bl’eakdOWt]TLS ha\(e the same _Iifetime _distri_butions, though different
model for fiber elements. Experimentally the power-law ex_tepdengles of clustering of ffa|led fibers. In the upper e_nd of
ponentp is very large, with exponents ranging from 10 to tNis regime, 1/ p<1, we give results where the distribu-
170 for rocks under Mode | deformatidi®l]. The large tion for bundle Ilfetlme is asymptotically Gaussian with
values ofp suggest perhaps that exponential growth lawsNOwn mean and variance. _ _
should be preferred over power laws; exponential growth In Sec. IV we discuss LLS theory. We consider first the
rates are usually considered indicative of activation procasep>1 where the asymptotic analysis relies prbeing
cesses and are suggestive of the importance of water in eartlarge. Unlike in ELS, we find brittlelike behavior, cluster
quake faults as a corrosive agent in the earthquake procesgcleation, and growth of an eventual catastrophic crack. We
[52], a point of view corroborated by the fact that water is anderive the asymptotic distribution for lifetime in terms of a
excellent solvent of the silicate bond in SiCDespite this  characteristic distribution functioWy(t), used in a weakest
connection, YK[50] used the power-law form with very local volume representation. We also consider failure rate
largep for its computational advantages, as do we. As Phoebehavior for 0<p<1 making the connection to ELS. Results
nix and Tierney[16] have shown, however, the power law for the degenerate cage=0 are discussed where lifetime is
also has a firm interpretation as a model for bond failuregoverned by the the largest of the fiber lifetimes, and the
under stress due to activation processes, whereby the expassociated extreme value theory applies. We investigate the
nentp is inversely proportional to absolute temperature.  extent to which these results, with minor modifications,
Because of the continuum nature of the YK model, themight apply to the case ©p<1/2. In many material set-
stress redistribution law has long range behavior that falls offings, the important regime jg> 1, but as mentioned earlier,
in distancex as x %2 for isolated fractures and in a more p may vary inversely with absolute temperature. Many ma-
complex manner for stress fields in the gaps between closelgrials such as silicon nitride ceramics show a ductile to
spaced cracks. This load-sharing behavior is much more ibrittle transition at high temperature, and the transitional be-
line with that seen in the elastic lattices studied by Curtin anchavior we uncover ap=1 exhibits this feature.
coworkerg39-42, than in the LLS bundle model. This sug- In Sec. V we present a comparison of LL&nd ELS
gests that the 2D system should have properties intermediatheory to Monte Carlo simulation results for LLS bundles of
between the LLS and ELS bundles we study. The numericalp to one million fibers in replications greater than 1000.
results of YK[50] indicate that their system displays a criti- Favorable comparisons are obtained between analytic theory
cal point behavior shortly before complete failure and,and computational experiment. Section VI concludes with a
hence, that interaction among cracks is vitally importantdiscussion of some extensions and connections to earlier
This suggests that system lifetimes should not be gauged hyork.

B. Overview of paper and main results
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We defer to the Appendix a discussion of the computa- The second rule is called equal load shari&gS). In this
tional algorithms developed for simulations of bundle failurerule all nonfailed fibers in the bundle share the applied
in kilo-replications of megasize bundles. Our ability to per-bundle load equally and all failed fibers support no load.
form the necessary Monte Carlo simulations is the direciThus ifj out of N fibers have failed, the surviving fibers each
outcome of these advances. Readers not concerned with thave load concentration factor
ability to perform such simulations can omit the Appendix,
while those who wish to develop this capability will find this KELS_
Appendix and its associated reference to be indispensable. In !
particular, we discuss the difficulties in keeping track of the
effects of load history on each fiber, determining on which
fibers to place the load shed by a fiber that has just failed, o ) ) )
and determining the next fiber to fail in the sequence as well Fiber elements are assumed statistically identical and in-
as its failure time. By using pointer arrays and a Specia].dependent Unqer a given |0aq hlstory, and.the |Ifetlm9 distri-
purpose adaptation of merge-sort algorithms in identifyingPution for a fiber element in terms of its load history,
and prioritizing failures, we are able to reduce the two taskg (t),t=0, follows
that would have required(N?) operations toO(N) and

O(N In N) operations, respectively. F(t;/(- )):1—exﬁ’ —\If( ftK[/(s)]ds) ] (2.9
0

N—_j, jIO,l,Z ... ,N—=1. (23)

B. Stochastic fiber lifetime model

II. MODEL ASSUMPTIONS .
where k(x), x=0 is called the breakdown rule ank(x),

A. Bundle geometry and load sharing rules x=0 is called the hazard function. In the present case, we

assume the power-law breakdown rule
array of N fiber elements numbered from 1 b from the K(X)=XP 2.5
left. We apply a positive fixed load to the bundle on a per ' '
fiber basis; that is, initially each fiber is intact and carriesyjth exponentp=0, and the Weibull hazard function
loadL. As time passes, fibers break leaving an array of failed

We consider a 1D fiber bundle in the form of a linear

and surviving fibers. Surviving fibers in an array share load W(x)=x", (2.6
according to a load-sharing rule and we will consider two
particular rules. with Weibull exponen{8=0, where we takg8=1. When a

The first rule is called local load sharifgLS). In this  fiber is under fixed load
rule there are three types of survivors: interior survivors, ,
boundary survivors, and a sole survivor. An interior survivor /(H)=L>0, 27
has at least one other survivor somewhere to its left and ong. icotime distribution is the Weibull distribution
other somewhere to its right. A boundary survivor has no
survivors on one sidéhough possibly some failurgsbut at F(t;L)=1—exqd — (t/t,)?], (2.9
least one survivor somewhere on its other side. A sole sur-
vivor is the only survivor in the bundle. For an interior fiber wheret, =L 7, but by taking3=1, as we are doing, this
adjacent ta' contiguous failed fibers counting on both its left distribution is actually an exponential distribution with mean

and right, its load concentration factdg, , follows and standard deviation both.
In the fiber bundle model we have conveniently taken any
K,=1+ L' (2.1) scale constants in the breakdown rule or hazard function as
2 unity. Any scale constants that do arise in practice can be

absorbed into normalizing load and time parameters. Hence-
where we also tak&,=1. This means that its actual load is forth we will think of both the load variablé. and time

K,L. On the other hand a boundary fiber has load concentra@riablet as dimensionless. S
tion factorK, ,, which follows Taking 8=1 renders a fiber memoryless, thus simplifying

the model. That is, its remaining lifetime given survival to
time t is independent of its load history up to timgand
r b . ) . . s
Kip=1+s+ 3, (2.2)  under its current fixed load is also exponentially distributed
’ 2 2 as though it were new. In Monte Carlo simulations of this
type of problem, unlike the common approach of small in-
whereb is the number of adjacent broken fibers between itcremental time steps based only on the current configuration
and the boundary andis as defined beforéncluding also  of failed fibers and surviving fiber loads, our simulation al-
the b fiberg. A sole survivor has load concentratidh An  gorithm will not use this memoryless property, and thus, can
alternative view of the rule is that a failed fiber shifts half of be used in the general cage- 1. Our approach can be seen,
its load to the closest survivor on its left and half to thehowever, to be statistically equivalef,9,14—17,46
closest survivor on its right, unless there is no such survivor The basic idea is that for a given fiber we need generate
on one side in which case all its load goes to the survivor oronly one random number once and for all, this number being
the other. its nominal lifetimety under unit load as generated using Eq.
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(2.8) with L=1. Then given its actual load history;(t)
=L,t=0 we can determine its actual lifetimeg;, from the
integral in Eq.(2.4) through solving

f Y [/(s)]ds=t,. 2.9
0

This is done for each fiber. Thus the main task reduces to
tracking each fiber over time by way of evaluating its inte-

gral on the left-hand side of E¢2.9), using a continually

updated version of its load history as neighbors fail and tak-

ing the upper limit as current time Then its own failure
time is the timet, when the integral first equatg. This is

the concept of a standard representative fiber used in previ-
ous workg14—17, and the contraction mapping in Newman
et al. [46], which is discussed in the Appendix. Fortunately

PHYSICAL REVIEW E 63 021507

=
LZPJ‘(Nl)/N( 1 )2(1P)
~ — dt
N Jo
L2 1
= 1- .
(2p-DN| " N2 !
For p=1/2 a similar calculation leads to
L~HnN
N

(3.5

Va Ty~

(3.6

the contraction mapping can be set up so that no integratioh®" 0<p<1/2, we obtain

iS necessary.

IIl. THEORETICAL RESULTS UNDER ELS

A. Mean and variance of ELS bundle lifetime

We consider the lifetime behavior of bundles under ELS
because of the special role it plays in interpreting LLS for

(3.7)

Last, in the limitp—0 we have
Var{ Ty]=~(1-1/N). (3.8

We will refer later to the standard deviation, Sy ], and

0<p=1. Under ELS the hazard rate for the next fiber to fail the coefficient of variation, CMT ], of bundle lifetime given

after j<N have already failed is

Z‘Z

L \P
_j) =NP(N—j)7PLP.
(3.0

xj=<N—j)K(KFLSL>=(N—j>(

The timesAT;, j=1,... N—1 between failures are inde-
pendent and follow the exponential distribution
Fi()=1—exp(—A;t), t=0, (3.2
with respective means [BT;]=1/\; and variances
VarfAT;]= 1/)\j2. The bundle time to failurely, is the sum

of the times between failures.
The mean time to bundle failure is

N— —» N
1 L
EThl= 2 =N

1 1 i
A ;o(l—J/N)
(N-1)/N/ 1 \1-r
o] e

L=* 1
:_(1

1
J=0
~L P

P - m . (3.3

By similar arguments the time until a given fractiog,
=j/N, of fibers has failed in a very large bundle is
(3.9

t(p)=(L PIp)[1-(1-¢)"], 0<¢<Ll

respectively by

SO Tn]= vVar Ty] (3.9
and
vvalT
CV[T\]= %. (3.10

B. ELS bundle lifetime distributions

As summarized in Kelley53], it is known forp>2/3 that
the bundle lifetimeT, asymptotically follows a normal
(Gaussiandistribution asN— o with mean ETy] and stan-
dard deviationyVarf Ty]. That is, the lifetime distribution,
Gy(t), follows

Gn(D)~P[(t—E[Ty])/VVai Ty]], (3.11
where
1z,
d(z)=—| e V'dy. (3.12

This is a sufficient condition. We conjecture that this
asymptotic normality holds for app=1/2. The difficulty in
any proof, however, is that asdecreases the bundle lifetime
becomes dominated by the last few fiber failures.

The casep=1 has special significance as a transition
value in LLS. In ELS the hazard rates arg=NL for all j
=0,1,2... ,N—1. Thus the timedT; between failures are
independent and identically distributed following the expo-

For the variance in the bundle lifetime there are varioushential distribution with means[BT;]=1/A;=1/(NL) and

regimes forp. For p=1/2 we have

variances Va[rATj]zll)\jzzll(N L)2. This is true for any
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load-sharing rule that conserves total bundle IGadluding

LLS), since the sums of the hazard rates are alwdys

Thus forp=1 the distribution functiorGy(t) is the gamma
(NLt)]

distribution
N—-1
- , t
jzo J! }

with mean ETy]=1/L and variance V&iTy]=1/(NL?).
Also, Ty asymptotically follows a normalGaussia distri-
bution asN— o with the same mean and standard deviation
That is

=

=

Gn(h)=1-e NH

0, (3.13

Gn(t)=~®[YN(Lt—1)]. (3.14

PHYSICAL REVIEW E63 021507

IV. THEORETICAL RESULTS UNDER LLS
A. LLS bundle lifetime behavior for p>1

In the following analysis the arguments are based on
p>1, though the results will work well fop quite close to
one. Our main goal is to determine the distribution function,
Gy(t), for bundle lifetime where we consider the bundles to
be large enough to ignore boundary effects. We begin by
considering the distribution functioﬁsf\,k)(t), for the time to
formation of a cluster ofk contiguous breaks wherk

=1,2,... .Appealing to results in Tierngyl5] and Phoenix

and Tierney{ 16], we have

G{(t)~1—exp{—Nc(L)t"}, (4.2)

Because of the behavior we encounter in the next section

under LLS forp>1, it is also interesting to consider
Wi()=1—-[1-Gn(H)]™, (3.19

for p=1 (though for ELS a slight extension applies jo
=1). According to Kelley{53] it turns out that
0, O<Lt<1,

lim WN(t): 1_Lte1_|_t

N— o

1<Lt. (3.18

We note that the limit is zero for€9t<1, which will not be
true later under LLS whep>1.
For the cas@=0, again ELS and LLS will yield the same

results because the failure rate for fibers is independent of the

loads on them.

C. Fiber failure rates under ELS for small p

Because of the connection between ELS and LLS for O

=p=<1, we later compare their fiber failure rates in this
range. Under ELS, whep<N—|, that is,j <N/2, we have

)p

1 L
N-—]

~[(N=])+]p]L?, (3.1

for j=0,1,2 ..., where the last expression applies to small
p. Forj>N-—j, that is,j>N/2, we have

NL

=(N—j)

p
e

[ NL\®
Nj=(N—=]) N=]
N—j)pr

)" N-i
j)Lp

j
No7) |

=(N—i)<

j
1+p.—_

~jP<N—j>1P( ]

1
Ay_1=NPLP~(N—1)P 1+pm)u. (3.19

for t=0 not too large, wherecy(L)=1, c,(L)=«(L),
cy(L)=«(L)x(K;L), and generally

1 k—1
6dL)= g e(Kical) 2 (L) ja(L). (42

(This result does not requirg>1.) Under the power-law
breakdown rule we have

Kk(KjL) =KL, 4.3
so that
c(L)=L*c,(1). (4.4)
For p>1, we have the approximation
k-1 Kk
ce(L)=Lke o j]:[l KP_,. (4.5

These results require time to be small enough for the
k-cluster to be “subcritical.” Physically this means that the
cluster has not yet reached the stage where it accelerates its
growth and becomes a catastrophic crack, which requires
additional time. A main goal is to obtain the lifetime distri-
bution, Gy(t), in the form

=

Gn(H)~1—exp{—NW(t)}, t=0, (4.6
whereW(t) is called the characteristic distribution function
for failure of a fictitious element, which captures the local
failure evolution including stress redistributiph3,14). As a
first step to estimatingV(t) we considef 15,16 the inter-
sections of thek andk+1 versions ofG{(t). This yields

the intersection pointg, given by

Ck(L):Ck+1(L)tk, k=1, (47)

which reduces fop>1 to
= k+1 2 \° A8
b > k2 4.8

We then consider the sequence of valuégs defined as
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Wi =i (L)t

J+1 k+1\K 2 |k
— kp_ k—1 kp _
=L 2 H 2 k+2
(k+2) P71 s k+1\kt1k+2 9
k122 (k+2)" 175 5 (49
wherek=1,2, ... . ByStirling’s formula,
(k+2)| N /27T(k+ 2)k+2+1/29_(k+2), (410)
and thus
/ p—1
W:~%(k—k2)(P_1)/2e_(k+2)(”_1)

X (k+ 2)pef(k+ 1)/(k+2)

(V2m)rt
%T

(k+2)@~Di2g=(k+2)(p-1)-1

(4.11

Next we obtain a relationship betwe&randt,, and we see
from Eq. (4.8 that

k=k(t)~2(Lrt) " Ye-D_2 (4.12

where we have dropped the subsciipn t. Letting W* (t)
=Wy, We thus obtain

a |\ ¢ (e-1) a | Ye-1)
RIS RAETE

(4.13
where
3p-1
o=, (4.1
=2r1 (4.15
and
-1

This is our first approximation t®V(t), which is based on
the time to formation of a criticak-cluster at timet as
though the bundle then fails instantaneoy4l$,16].

We can also speak of a critical cluster sik&, which is
the value ofk(t) that solvesNWg,=1. Roughly speaking

k* is the cluster size at the onset of failure of a “typical”

specimen(with lifetime close to the median lifetimef size
N. It can be shown by inverting this expression thatde-
pends onN following
In(C*N)
k*+2=p_—1(1+8ﬁ), (417)
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where

¢*{In[In(C*N)]—=In(2p—2)}
IN(C*N)— ¢* '

(4.18

SN%

So far we have considered the distribution for the time to
critical cluster formation. However, as noted by Curtin and
Scher{41], it takes significant additional time for the cluster
to become catastrophic. To gain insight into this time differ-
ence we adapt to the present setting a solution by Yaschin
[54] and Feigin and Yaschifb5] for power-law growth of a
one-direction sequence of failures of fresh elements. Making
this correspondence requires>1. First we write out their
solution using their hazard rates written in a form that can be
matched to ours for a growing failure cluster in a bundle,
which can grow in either direction. We then write out all the
idealized local load-sharing versions of the hazard rates, and
then match these to those used in the Feigin—Yas@htf)
solution. Finally we make adjustments for those entries
where matching does not occur.

To adapt the FY result, we taken our notation and cor-
recting a minor algebraic errpr

AY=Le2te(j+1)P, j=0,12..., (419
and write their result as
a 1/2
WFY(t)~ P /
(J_ yioe Np— 1l
a \Yk-1)
Xexp{—v(p)(p—l) i ]
(4.20
where
sin(/p) pl(1-p)

In the case of LLS, the hazard rates are given by

1
Ao= LP=§LP21”’(2)”, (4.22

and

=Lr2tr(j+2)", j=1,23..., (4.23
since for a contiguous cluster pbreaksK;=(j+2)/2 and
there are two overloaded flanking fibers at risk. These can be

connected to those of FY by noting that

1
)\OZ_AEY

5 (4.249

and

021507-7
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N=NY =123 (4.25
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We can also determine the size effect for the characteris-
tic failure time, t;. Upon invertingNW(t;)=1 asymptoti-

The main difference between the FY case and LLS is thatally, we obtain

in LLS there is no equivalent element with failure with rate

A", and the failure rate in LLS corresponding X§" is
actually half that value. This occurs because, wpenl, a

failure sequence in LLS involves one initiator followed by

propagation through neighbors of which there are always
two choices, one on each side. The latter difficulty can bavhere

treated by thinking in terms dfi/2 fibers rather tham fi-
bers, and the former by dividing their result by 2tL?.

This is seen by studying the appropriate convolution and en
recognizing that, in the FY case, the total time can be de-

composed into an initiation time under hazard re§é and a

~ p—1 Pt
ty~alL™ "’ m ) (4.32
~ %¢>{In[ln(CN)]—ln(p—l)}. 4.33

IN(CN)— ¢

propagation time involving the sums of the times under theHeret; is also approximately the median lifetime. Even with

remaining hazard rates;’, \5", ... .
With these constructions, we estimat4t) as

R [ a %D Yp-1)
W(t)~C(tL—p) exp{—y(p)(p—l)(m j

(4.26
where
E=(2mpr 1L 4.27
p—1
and
d=3(p—1)/2, (4.28

and againa=2°""1,

This result differs from the result foA* (t) obtained ear-
lier for the time to form a critical clustér* . The key differ-
ence is the introduction of the factg(p) in the exponential.

There is also a lesser difference betwegrand ¢* and a

small difference betwee@ andC*. The main effect is cap-
tured, however, in noting that

a | Y61 a Y(p-1)
Y(P)| 5 :[W} (4.29
and
4y |SiN(7lp)|P
y(p) V= W—/p} ~1-m?/(6p). (4.30

The existence of the factar(p) compared with unity has

the effect of lengthening the characteristic time to failtire
as compared to the characteristic titfeto critical cluster

formation, obtained by solving\W(t;)=1 and NW* (t*)
=1, respectively. The result is

t* *

{[sin(mlp)I(mlp)}e  1—m2(6p)°

(4.3)

the correctionéN, accuracy of this result requirds large
whereby INnCN)>¢=3(p—1)/2. This points to the difficulty
in using Monte Carlo simulations on bundles of limited size
to reveal true large-scale behavior.

B. LLS bundle lifetime behavior for 0 <p=<1

We begin by considering the cage- 1, wherein the fiber
failure rate is exactly the load on it. Since the fibers are
statistically independent and their loads sum to the bundle
load NL, the failure rate for theth fiber to fail, irrespective
of position and given thai—1 have already failed, is also
NL. Thus this failure rate is independent of the number and
configuration of failed fibers up to that point. Thus LLS has
the same distribution for times between successive fiber fail-
ures as ELS, as mentioned earlier. Thus the lifetime distri-
bution for the bundleGy(t), is also given by Eq(3.13 and
asymptotically by Eq.(3.14). (This is not true, however,
when B#1.) This result forp=1 suggests that ELS will
play a key role in the regimeQp=<1.

Despite this equivalence in bundle lifetime fpe=1, a
difference between LLS and ELS is that fiber failures will be
more clustered in LLS where there will be more large clus-
ters and fewer small clusters. The failure rates for fibers next
to clusters are always higher than for survivors with no failed
neighbors. Under ELS clustering will be totally at random
with a pattern as in 1D percolation with—j broken fibers.
Also in LLS the spectrum of loads carried by surviving fibers
for j=1,... N—1 will be spread out whereas in ELS, all
the loads are simpI\WL/(N—j). Extending our earlier re-
sult, Eq.(4.2), under LLS forp>1 to the present case pf
=1, we see that the number of clusters of dizat timet is
approximatelyNc,(1)(Lt)* wherecy(1)=1 and

k—1

k+1
c(1)= szo ci(1)cy—j-1(1).

(4.34

From this we could estimate the LLS load spectrum.

For 0<p<1 we have no theory for the lifetime distribu-
tion under LLS except to say that we will find computation-
ally, and supported by fiber failure rate arguments presented

Note from the middle expression that the two times divergenext, that the differences between ELS and LLS will be

asp—1 from above.

minor.
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C. Fiber failure rates under LLS for small p

The fiber failure rate for &j<<N is

AoL P=N, (4.35
P
MLTP=(N=3)+2| 1+ 3
1 P
=N—-1+2 1+—) —1]
2
~N—1+p 2In(3/2)+O(p?), (4.36)
1 P
)\ZL"=(N—6)+4(1+ 5)
1 P
=N—-2+4 +§ _1]
~N—2+2p2In(3/2)+ O(p?),
(4.37)
AL ™P=N—j+jp2In(3/2+0O(p?) (4.38

where the latter approximations in each case requirg 0

<1. These approximations require the breaks to be well
separated, which implies that failures of fresh fibers are
much more likely than failures in fibers next to old breaks,

which basically means thd—j>jp 2 In(3/2). Under ELS,
we recall from Eq.(3.17 that \jL""~N—j+jp. Also as
p—1, it can be shown that;L ""~N+j3(p—1)In(3/2) as
compared tonjL " ?~N+j(p—1) for ELS. Thus for 6<p

<1 the hazard rates are only slightly smaller under LLS than

under ELS.

PHYSICAL REVIEW E 63 021507

there could be a small difference because “X"s will tend to
clump more as they develgp/NVe have

ALT P~Nq2 (k+1) )q pk

2pp [E (k+2 p+l k+2__ E (k+2)ppk+2]
=0

= 572 [k§=} kP ipf= 3 (k+2)°pK (4.42
Moreover,
go k@pk~ J;taexq—tm(l/p)]dt
={In[U(1-]}* T (a+1)
~(Lq)*“ *al'(a), (4.43

so under LLS,

3

N
ALTP~ a

1 1
sz—pz[ﬁ(lﬁ DI (p+1)— quPF(P)

1
= qu_‘{mh(ﬁ D(p+1)—ql.

Next we look at .j=<N, and we note first that for any sincep=1—q, so we see that

configuration of “X”s and “Q"s, i.e., failed and surviving

fibers, if there are strings of “X”s then the hazard rate is less

than if all “X”s are isolated, because

p

(2k—2)+2 (4.39

k\” 1
1+ -] <2k|1+=
p p

(4.44
When 0<p<1, however, we have
1 P
WF(P+1){(P+ 1)—Q}“T, (4.49
ijfﬂquH’i (4.46

2p’
compared to the ELS result, E€B.18, rewritten as

AL™P=Ng'"*. (4.47)

But asj increases there will be many strings of “X"s and So there is little difference between ELS and LLSjasN

eventually asi— N, only isolated “O”s exist. In that case
we consider strings like

rOXX--- X0 XXX O (4.40
k—i l
and let
p=j/N, g=1-j/N. (4.41

sincep=j/N—1.
Note that forp=1, the LLS result is

N < Nq3 2
NLTP=—ro (k+1)(k+2)p*“= =N,
L= & (Dl 2Pt = s
(4.48
as it should be.
In summary, in comparing time&T; between fiber fail-

ures in LLS and ELS, there is no difference in fiber failure
rates forpo=0 andp=1, and for G<p<1 there is little dif-

Then given surviving fiber “O” sandwiched between strings ference at the extremes<g <N andj—N. Actually j—N

of breaks “X"s as above, the probability it has exactty
broken neighbors isk(+ 1)g%pX

is most important because tT;’s are relatively the long-
est there. Thus LLS may give slightly longer bundle failure

This result assumes breaks are positioned at randontimesT, than ELS, but the shapes of the distributions should

which is approximately true for smafl. (For p nearer to 1

be similar.
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FIG. 1. Cumulative distribution functioiGy(t), for LLS bundle
failure time for fiber exponentp=2, and bundle sizesN
=8,16,32,64...,1 0485761024 replications eaghTimes shown
in all figures are dimensionless.

D. Lifetime behavior for 0 =p<<1

When p=0, the fiber failure rates are all the same since
k(K,L)=(K,L)°=1, and the times between fiber failures

have rates

\j=N-j, j=01,...N-1, (4.49

By definition, the lifetime of the bundle is just the maximum

lifetime found among the fibers, so that
Gp(t)=(1—e HYN~expg —Ne H=exg —e t-NN7],
(4.50

The median lifetimety 1/, from Gy(ty 12 =1/2, is

tyyz~INN=Inin2.

(4.51

The a-spread of the distribution defined A§N,a=f,\,v(1_a)

— 1ty Where 0<a<1/2 and generalyGy(ty ) =p,0<p
<1, can be seen to satisfy

ln{—ln[l—GN(t)] }

10°

FIG. 2. Gy(t) under the same conditions as in Fig. 1 except
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In{-In[1-G,(1]}

.10 1A AREEETT|
10" 10°

10" 10°

FIG. 3. Gy(t) under the same conditions as in Fig. 1 except
=10, the largesN is 16 384 and the replications are 262 144.

In(a)

AtN’a""In In(lf a)

, (4.52

and so is independent . Earlier, we argued in Eq3.8)
that Vaf Ty]=1—1/N.
For very smallp we conjecture that the lifetime distribu-
tion of the bundle will approximately follow
t—E[Ty]

GN(t)~exp{ exp{ —| —V—
WVarTy]

The idea is that the lifetime is dominated by some long-lived
cluster of fibers, which grows slowly in size &kincreases
but not enough to compensate for the extra load it eventually
must support as fibers fail. This will be investigated using
computational simulations.

We turn our attention to a detailed comparison between
the statistical failure theories for LLS and ELS and exact
Monte Carlo simulations. Computational methods needed to
obtain these results in hours-to-days, rather than decades-to-
centuries, are provided in the Appendix.

] . (453

In{-In[1-G, (]}

wl el ]
10" 10°

vl g
107

107 10 10° 10*

FIG. 4. Gy(t) under the same conditions as in Fig. 1 except
=20.
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V. COMPUTATIONAL RESULTS sponding to— 0.367 on the vertical scgleThis suggests that,
except perhaps for the shortest-lived bundles, once one fiber
fails the whole bundle quickly fails so that the bundle acts
like a chain of N fibers whereby the median would be
roughly 1N, as is observed in the plots.

In the deep tails of the distributions, convergence and
A. Bundle lifetime behavior for p>1 even crossovers for the smallest bundles may occur if the

Figures 1—4 show empirical plots of the cumulative dis-number of replications is sufficiently largee., low enough
tribution function(c.d.f) for bundle lifetime,Gy(t), versust ~ Probability leve} because of boundary and finite size effects.
for the casesp=2, 4, 10, and 20. The coordinates are For very smallN, bundle failures in the deep tails are likely
Weibull coordinates wherein {rIn[1—Gy()]} is plotted 0 begin with fibers failing at or near the bundle edges. These
versus Inf) on a linear scaldthough for convenience a then generate clusters that rapidly propagate across the
log,o(t) scale has been uskdEach figure has bundles sizes bundle since the load is shed totally to the nearest interior
N=8,16,32,64. . .,1 048 576with 1024 Monte Carlo repli- survivor rather than being divided equally between two
cations each, except for Fig. 3 which has maximim flanking survivors. _ o
—16384=2" but with 262144-2'8 replications each The lower tail crossing effect is very apparent in Fig. 1 for
(though due to the huge size of the data set, in each curve =2 A Weibull tangent to the lower tail of thid =32 fiber
first 1024 points were plotted but only one out of every 256Pundle(at probability level 1/15phas a Weibull shape pa-
points thereaftgr For convenience, we will refer to rameter of approximately 10, whereas that for tNe-8
1 048576= 2% fibers in a bundle as a million fiber bundle, Pundle is approximately the same number, 8. The latter cor-
and 1024210 as a thousand realizations. In all cases thd€sPondence is to be expected once the critical cluster size
deep tails have been truncated so as not to show the bottofdf @ bundle reaches its width. This limiting aspect of the

seven point<12 in Fig. 3 in order to subdue their typical slope is the cause of the crossing. For the largest bundle with
erratic behavior. p=2, the Weibull tangent has a much larger exponent of

Clearly all cases op show a size effect as the probability @Pout 25 in the deep tail, so a cluster of approximately 25
of failure increases with\N. If Gy(t) were truly a Weibull breaks is required to nucleate a catastrophic crack. While
distribution, 1 exff —(t/to,)) *N] with shape parametety, there is noticeable convergence in Figs. 2-4, the potential
and scale parametet,, the plots would be straight lines lower tail crossing effect is not apparent pecause t'he curves
with slopeay and value 0 at Inig,). The lack of linearity in 40 Not go deep enough into the lower tails, even in Fig. 3.

le in Fig. 2 wherp=4, the curve for the million
all casegexcept perhaps for the smallest and largest bundle§°" €xampe : _
for p=20) indicates thaGy(t) is not Weibull. Note, how- 'oer bundle is roughly Weibull with shape paramei&dope

ever, that locally the slopes of these curves are generallf: 1hus the lifetime is approximately determined when a

multiples of one, the Weibull shape parameter for a sing| ritical cluster of four adjacent breaks is formed, and true
fiber element un,der fixed load, according to E2.8). The crossovers will not occur since such a cluster is well con-

exception is the upper part of the lifetime distributions for @ined within the smallest bundles. In Fig. 3 fpr=10,
very small bundles in the case pf=10, and 20, where the which goes much deeper into the lower tails, convergence is

slope is clearly unity even near the median lifetifoerre- again appareqt, but again not true crossing. Weibull tangents
to the deep tails foN=8 and 16 have exponents of approxi-

mately 3, which again is considerably less than the bundle

In all the results that follow, we have taken the Idatb
be unity, with no loss in generality, sinéecan be replaced
by tL? to recover results for arbitrary.

0

-5
£t
- -10
\./2 | —_
S <
= g =
— _15 pd
= 2
0 r O
e | 2

20 [ =

El
25 L A . Ly
0.1 0.2 0.5 1.0 2.0 L -
t o5 L . M |

107 10" 10°

FIG. 5. Cumulative distribution functiona/y(t) (solid lines on P

Weibull coordinates, which are reverse weakest link transforms of

Gn(t) in Fig. 1 for p=2. The dotted line is the approximation FIG. 6. Wy(t) (solid lines, \7V(t) (dotted ling, and W* (t)
\7V(t), and the dashed line is the approximatifi (t) to the true  (dashed ling under the same conditions as in Fig. 5 except4
characteristic distribution functiow(t). andGy(t) comes from Fig. 2.
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0 ——rrrr

ln{—ln[l—GN(t)]/N}

20 |

10° 10 107 10 10" 10°

FIG. 7. Wy(t) (solid line9, W(t) (dotted ling, and W* (t)
(dashed ling under the same conditions as in Fig. 5 exceptl0
andGy(t) comes from Fig. 3.

widths. In Fig. 4 withp=20, whenN is very small the
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FIG. 9. Mean time to bundle failure[Ey], versus LLS bundle
sizeN with 1024 replications fop=1/10, 1/4, 1/2, 1, 2, 4, 10, and
20.

two versions of the trugV(t) perform very well with the one

Weibull tangent has slope near unity. Thus in this probabilitypased on time to critical cluster formation being more con-

range, once one fiber fails the whole bundle fails. Whies

servative. For highep values, neither approximation is suf-

large (say one million fibers the Weibull exponent is 2, so ficiently conservative, i.e., both overestimate the time to
two adjacent failures fail the bundle. In these cases the enfichieve a given probability of failure by roughly a constant
pirical plots are approximately Weibull except for the middle factor somewhat greater than one. This occurs because many

sizes where there is bilinear behavior, discussed later.

possible failure sequences, such as linking of smaller clus-

Figures 5—8 show plots of the reverse weakest link transters, are not accounted for. Fer=2, one is too conservative
form, Wy(t)=1—[1—Gy(t)]*N, of the data in Figs. 1-4, and the other not conservative enough, but the error is less

on Weibull coordinates. The idea is thatify(t) converges

to a limit W(t) as N grows large, thenGy(t)~1—[1

than might first appear as the time scale is greatly expanded.
In Figs. 5—8 the time difference between the two versions

—W(t)]N. On Weibull coordinates, the differences betweenW(t) and W* (t) is essentially the additional time required
the G (t) for eachN would appear as vertical shifts of mag- for catastrophic growth of the critical cluster. For largethe
nitude InN, which is what is seen in Figs. 1-4. Except for time difference is slight compared to the time to form the
small bundle and boundary effects, these clearly disappear ixitical cluster, but fop =2 the time difference is by a factor
Figs. 5-8. Also shown are the two approximations to theof about 2.5, as can be seen also from @q31). This factor

characteristic distribution functionjV(t) and W* (t), given

by Egs.(4.26 and (4.13, respectively, where the latter is

based on time to critical cluster formation. Fer-4 these

10 L

s L

In{-In[1-G ()}/N}

20 L

25 Lowedvvid v vl vl v vl v vved vl el ]
107 10 10° 10" 10° 10 10! 10°

t

FIG. 8. Wy(t) (solid lineg, W(t) (dotted ling, and W* (t)
(dashed lingunder the same conditions as in Fig. 5 except20,
whereGy(t) comes from Fig. 4.

rapidly grows tox asp—1 from above. Fop =10 the dif-
ference is only about 20% in the deep f{alightly less than

the difference betweew* (t) and the empiricalV(t)]. Thus

for p>4, these estimates give good agreement with the true
W(t), which is quite reasonable even fpr=2. In Fig. 8
there is clearly bilinear behavior in the empirical plots for
p=20, and the Weibull segments have slopes exactly one
and two, respectively, consistent with the corresponding
critical cluster sizes of one and two.

A key conclusion from Figs. 1-8 is that fgr>1, the
lifetime distribution has the basic weakest-link structure
Gn(t)=1-[1-W(t)]N=~1—exd —NW¢)]. Thus LLS be-
havior differs from that under ELS, where the lifetime is
asymptotically Gaussian, E¢3.11), with mean, Eq.(3.3),
which converges to a finite limit g/asN— oo,

Figures 9—11 show plots of the empirical mean, standard
deviation, and coefficient of variation of lifetimetandard
deviation/mea)) as a function ofN on log-log coordinates
for p=2, 4, 10, and 20. The plots are based on 1024 repli-
cations each folN=8,16,32,64...,1 048&76. The mean
does not follow the ELS mean, E(B.3), where the lifetime
approaches p/for large N, though forp=2, the difference
is minor for smallN. The mean also does not follow a power
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FIG. 10. Standard deviation of time to bundle failure,[$J],

versus LLS bundle sizdl under the same conditions as in Fig. 9. FIG. 12. Empirical fiber failure times versus fraction of failed

fibers in a single bundle wittN=4096 fibers. Solid lines are for
LLS bundles and dotted lines are for ELS bundles.
law in N, but ultimately scales aa[(p—1)/InN]®~Y, ac-
cording to Eq(4.32, though the error term is important even shows the rapid collapse due to increasing local stress con-
for the largest values dfl. The standard deviation ultimately centrations around a cluster that becomes catastrophic once
scales asa[(p—1)/InNJ?, and the coefficient of variation, about 1/4 of the fibers fail. If the bundle size were increased
being approximately the inverse of the critical cluster sizeby orders of magnitude, the=2 curve would be the same at
k*, ultimately scales asp(—1)/InN according to Eq(4.17.  a very small fraction of failures but would flatten before the
For p=20, the rapid drop in the coefficient of variation at fraction 1/4 as the bundle failed earlier due to the size effect.
aboutN=3000 is not an artifact. In fact the coefficient of These effects would be even more pronounced for lapger
variation is approximately 1 for £N=<2000 corresponding and the critical fraction would decrease sharply.
to k*=1, and becomes 1/2 over roughly 5 GON
=<1 000000, corresponding & = 2. This feature is consis-
tent with the kink observed in Fig. 8. In essence, these values
of N are too small for the large scale trend to take over. Th
LLS standard deviation also behaves very differently from
the corresponding ELS one that decays ad\l/Eq. (3.5).
Figure 12 shows plots of empirical fiber failure times ver-
sus fraction of failed fibers in a single LLS bundle with 4096
fibers (solid lineg and p=2. Also shown is this fraction as
calculated from ELS theory, Ed3.4) (dotted line$. Note
that LLS behavior diverges from ELS behavior as LLS

B. Bundle lifetime behavior for 1/2=p<1

Figures 13 and 14 show empirical plots of the c.d.f. for
undle lifetime,Gy(t), versus normalized timg,,,,,, for the
casesp=0.5 and 0.75, respectively. We employ “Gaussian
coordinates,” i.e., the ordinate is scaled so that a normal or
Gaussian distribution will appear to be a straight line. More-
over, we normalized the lifetime data, by subtracting the
sample mean and dividing by the sample standard deviation,

99.99%
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Standard Deviation/Mean Failure Time

Fig. 9.
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FIG. 13. Cumulative distribution functioB(t) for LLS bundle
failure time plotted on Gaussian coordinates versus normalized
FIG. 11. Coefficient of variation of time to bundle failure, bundle failure timef,qm, (actual time minus sample mean then di-
CV[Ty]l, versus LLS bundle sizW under the same conditions as in vided by sample standard deviatjofor p=0.5 and bundle sizes

N=8,16,32,64...,1 048 5761024 replications eag¢h
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FIG. 14. Gy(t) under the same conditions as in Fig. 13 except
p=0.75, the largest bundle has 16 384 fibers and the number of texpt
replications is 16 384.

FIG. 15. Predicted fiber failure times,.q4, in a large ELS
for eachN. The scaledom, therefore, has zero mean and pngle versus empirical fiber failure timetg,, observed in an
unit variance. For p=0.75, the bundles sizes were || g pundle with 4096 fibers and=0.5. Times were evaluated at
N=8,16,32,64...,16 384 with 16384 replications each, equivalent fractions of failed fibers in the bundle.
and forp=1/2 the bundle sizes were 8,16,32.,1 04876,
but with 1024 replications each. If the distributior,(t),
were truly normal, on these Gaussian coordinates they woul T p>1/2. Under LI__S! however, careful study of the em-
overlay each other onto one straight line corresponding t§"ical standard deviation foN=16384-1 048576 shows

zero mean and unit standard deviation. In both cases, thtgatr?t[))owercliaw Vf\{ith exponent O.4f?4.2 pr%vigdg%s ghvisibly
empirical c.d.f.’s clearly approach such a Gaussian distripyMuch better data ifregression coefficient 0.999 Sghan

tion asN increases. Though not shown, this result is alsod_OeS this ELS result. Using all data fra=8 upward also

_ ; : Ids an excellent fit with exponent changed trivially to
seen forp=1 as predicted by theory since ELS and LLS yie X

have the same asymptotic Gaussian lifetime behavior. Ac%fgn' ;—hEE Sa slubtlle but fundar‘r;entarll dn‘ferenge betV\lleen
cording to ELS theory the lifetime is also asymptotically _1/2an clearly emerges for the transition value
Gaussian fop=0.75, but only approximate arguments havef ~ -'¢: L . . .

been given to suggest that this also holds under LLS. For Figure 12 shows plots of empirical fiber failure times ver-

=0.5, no theoretical proof exists to show that either ELS orUs fracti_on_of failed fibers in an LLS bundle 8= 40.96
ELS lifetime is indeedpasymptotically Gaussian. fibers(solid lineg for p=0.5, 0.75, and 1. Also shown is the

Figures 9—11 show the mean, standard deviation, and ¢ ._orresponding result, E¢3.4), from EL.S theory(dotteq
efficient of variation of lifetime for 1/2 p<1. For p=1, ines). As expected ELS and LLS behavior are close to iden-

both ELS and LLS bundles have mean exactly one foNall tical. These curves would remain unchanged for lafger

and standard deviation decreasing agN,/ as seen in the E\'/gelljrezﬁg\;‘n?o%f’oﬁrhrgsgr%n?r'igg’f?is; %r;lcljj r?e.?tisrﬁ:eessfnegn
empirical plots. For 1/ p<1, LLS was argued earlier to Y, b P

have very similar behavior to ELS but with LLS producing actual LLS bundle of 4096 fibef&orizontal axi$ against the

slightly longer lifetimes. Under ELS the mean, standard delimes anticipated from ELS theory for the same fraction of

viation, and coefficient of variation were given, respectively,;ﬁ;ﬁi ;g??ﬁgﬁ;ﬁ;?ee tti)r%gglier; EE%Agﬁﬁglen;Otzgc%rgerTgrr\eer
by Egs.(3.3), (3.9 [based on Eq(3.9)], and(3.19. Though than thos’e in ELS bundles by a modest amount andg the
not shown in Fig. 9, fopp=0.75 the mean under LLS was y ’

found to be about 8% larger than under LLS. The standar(gg\?vcnt tgef /%mﬁztrgﬁgiw?rigqﬁ:nggﬁeg Sgig?ﬁasﬁztf;:l 1
deviation was found empirically to decrease for largéer which ﬁti v i traiaht lin witk? | QF:]

(above 16 38%as N %479 with a regression coefficient of ch essentially 1S a straig € slope one.

0.999 85, which is very close to ti~ 12 scaling behavior of
ELS, though LLS values were consistently about 36% larger
for eachN. It is not entirely clear that the LLS exponent is  Figures 17 and 18 show two empirical plots of the c.d.f.
indeed 1/2 wherp=0.75, and finite size effects are likely for bundle lifetime,Gy(t), versus standardized tinidor the

only to affect the third decimal place. Fpr=1/2 the mean casep=0.1 and bundle sizeN=8,16,32,64...,1 04876,
under ELS still follows Eq(3.3) and thus has a lardé limit each with 1024 replications. In Fig. 17 the lifetime data are
of 2. Figure 9 shows that the LLS empirical mean is onlynormalized by subtracting out the respective sample means
slightly larger than 2 by perhaps 10%. On the other hand, byand dividing by the respective sample standard deviations
Eqg. (3.9 [based on Eq(3.6)] the ELS standard deviation is and then plotted on Gaussian coordinates. Clearly the empiri-
approximately+/(In N)/(NL), which is a departure from that cal c.d.f.’s do not approach a Gaussian distributioriN&an-

C. Bundle lifetime behavior for 0<p<<1/2
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texpt FIG. 18. G\(t) under the same conditions as in Fig. 17 except

on coordinates of the extreme value, double exponential distribu-
FIG. 16. Predicted,q4versus empiricate,, just as in Fig. 15 tjon.
exceptp=0.75.

=1048576 are about 4.1 and 7.9, which exceed the ELS

creases, unlike fos>1/2. In Fig. 18, the normalized lifetime values by roughly 5%. By Eq3.7) and Eq.(3.9) the ELS
data is plotted on the coordinates of the extreme valuestandard deviation scales for large bundlesNag. Power-
double exponential form, Eq4.50, as motivated by the |aw fits to the LLS data fronN=16384—1 048576 gave
casep=0; that is —In[—~InG\(t)] is plotted versud. Re- 1 7129y~025044nd 1.387R~%19031 50 the exponents are
markably the data yield a near straight line fit dsgrows  aimost identical to the exact ELS values0.25 and—0.1,
large. (Small upward bias in the extreme lower and uppefrespectively. The LLS standard deviations, however, are
tails results from our choice of vertical plotting positiaril about 20% and 11% higher than for ELS. For0, ELS
in graphing) Although not shown, results fop=0.25 are  and LLS are identical, and for largét the mean grows as
nearly identical. InN and the standard deviation remains fixed of order one.

Figures 9-11 also show plots of the empirical mean, stan-  Figure 12 shows plots of empirical fiber failure times ver-
dard deviation, and coefficient of variation of lifetime as agys fraction of failed fibers in an LLS bundle of 1024 fibers
function of N on log-log coordinates. The plots are based ON(solid line9 and for p=0.1 and 0.25. Also shown is the
1024 replications each foN=8,16,32,64...,104&76. result, Eq.(3.4), calculated from ELS theorydotted lines.
For 0<p<1/2, the ELS mean again follows E@.3), and so  As expected, ELS and LLS behavior are close to identical
has a largeN limit 1/p, though the deviation decays only as and would remain so for even largst Figures 19 and 20,
N™”. The LLS empirical means fop=0.25 and 0.1 aN  for p=0.1 and 0.25, respectively, show plots of the empirical
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FIG. 17. Cumulative distribution functiorGy(t), versus nor-
malized bundle failure time,,.,, (actual time minus sample mean texpt
then divided by sample standard deviajigriotted on Gaussian
coordinates for p=0.1 and LLS bundles with N FIG. 19. Predictedqversus empiricate,, just as in Fig. 15
=8,16,32,64. ..,1 048 576ibers (1024 replications eagh exceptp=0.1.
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4.0 T ferent, known forms for the mean and standard deviation.
35 _ p _ Our model and some of the results also have close con-
~F ] nection to the models of Gotlibt al.[37], and of Curtin and
30 F E coworkers[39—-47 for failure in a 2D lattice where failure
i 7 . clusters may wander somewhat in 2D. In their model, how-
25 F - ever, the stress concentrations around long linear clusters of
T a0 : 3 breaks scaled as the square root of the cluster length rather
& F E than the length itself, thus introducing the exponent 1/2.
15 B E (Their model also had longer range stress redistribution de-
: ] creasing roughly as the-1/2 power of distance from the
Lo F . cluster tip) As a result, our transition valye=1 is moved
- . up to p=2, a value identified by Curtin and coworkers
05 3 E [41,42 who also report percolationlike failure far<2 but
00 Ben e without the explicit mathematical connection to ELS that we
00 05 10 15 20 25 30 35 40 have established fgs<1. Also, Curtin and coworkers did
¢ not obtain the power prefactor we have determined in our
expt estimates ofV/(t). This prefactor is important, and neglect-

ing it may be responsible for some of the disagreement be-
tween their theory and simulation. Curtin and coworkers
[41,427 also have discussed the difference between the time
i _ ) ) i _ to development of a critical cluster versus the time to final
fiber failure times in an LLS bundle of 4096 fibelfsorizon-  aiiyre. which includes the additional time the cluster takes
tal axig against the times anticipated from ELS theory, Eq.tg hecome catastrophic. They refer to this time difference as

(3.4). Forp=0.25, as more fibers fail, the LLS bundle failure 5 1igiq shift involving the factor 2/ whereas we find that it is
times lag those under ELS by a modest amount, but less thafimayily a scale factor in the lifetime distribution, in our
for p=1/2. Whenp=0 the lagging appears to turn into lead- c4qe approximatelyt w2/(6p) rather than + 1/p as would
ing, but this happens for this particular realization but not ingcer following their approach. In our case the version based
general since the mean lifetime is greater under LLS, thougRiy on time to critical cluster formation actually behaves
the variability is somewhat largeso such realizations are better in comparison to the simulation results.
more commop Note that ag decreases, the last few fiber — the form of the lifetime distribution bears close resem-
failures increasingly occupy a larger fraction of the overallpjance 10 the form found in static strength as obtained in
lifetime, which results in breakdown of Gaussian lifetime ppoenix and Beyerleif22] and Wu and Leath35). In fact
behavior as the averaging effect in summing interfiber failureupon applying an increasing load historg(t) = Bt t>0,
times is lost. and taking the bundle strength to be the loadt the time of
failure, it can be showf16] that the distribution function for
VI. DISCUSSION bundle strength is obtained from that for lifetime as

1
The LLS model we have considered is virtually identical Gn{o” " /[B(p+1)]}. (In fact, under power-law breakdown

to that of Tierney[15,17] and Phoenix and TierndiL6]. We any positive appligd bundle load history can be treated in a
have assumeg@=1, which has allowed some nonessentialSimilar way) Thus in Eq.(4.26, the exponent oo becomes

simplifications in the analysis and computations. These au?t1)/(p—1) as compared to unity in the static model in
thors only considered the regime> 1, but we have investi- Phoenix and Beyerl@[ﬂZ]. They point out an apparent tran-
gated also the regimes<p<1. In Sec. IV, for the case sition to ELS behavior for small values of the Weibull shape

p>1, where brittle cracklike behavior prevails we were ableParametep for fiber strength, which correspondsge-1 in

to develop explicit, closed-form approximations for the char-the present case. Thus the current transitiopatl corre-
acteristic distribution functionV(t) and related quantities sponds tgp=2. This transition is more explicit in the present
such as the critical cluster siz€ and the dependence of case because of the appearance gb4/{) in the exponent
bundle lifetime onN. For 0<p=<1 we also demonstrated on time or stress. It holds for all volumes, whereas in the
that LLS is very close to ELS in behavior with similar scal- strength case, reverting to LLS-like scaling may eventually
ings for the mean and standard deviation. In faet,1 was  occur for large enough volumes. This difference in the hard-
found to be a transition value where the bundle lifetime dis-ness of the transition to ELS behavior between strength and
tributions are the same and Gaussian for lalgéthough lifetime requires more study.

with different spatial patterns of failuresWhile this Gauss- We conclude that the lifetime distribution is much more
ian lifetime behavior appears to persist downpte 1/2, we  sensitive to the form of the localized fiber stress redistribu-
demonstrated computationally that LLS and most likely ELStion mechanism fop larger than a critical valuey., than

do not have Gaussian lifetime behavior fox@P<1/2, but  below it, and that there will be a drastic change in behavior
have behavior related to the double-exponential, extremethrough the transition. This critical value is expected to vary
value distribution for the maximum of independent and iden-with 8, when the model is extended to permit valuesgof
tically distributed exponential random variables but with dif- other than unity, as we have assumed.

FIG. 20. Predicted,4versus empiricate, just as in Fig. 15
exceptp=0.25.
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Finally, we note again the importance of blending physi-if intact. Third, we know the time; when that fiber is pro-
cal theory with computational methodology in order to iden-jected to fail, assuming that its load does not change. Should

tify and verify the scalings that emerge. the load applied to thigzh element change td; at timet due
to failure of a neighbor, we have a rule for calculating a
ACKNOWLEDGMENTS revised projected lifetime t/, namely t/=t+R(t;

—t,/,7}), which replaces the previous value. In the power-

We thank Leon Knopoff for motivating us to study the jaw scheme, this rule has the form of a contraction mapping
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this algorithm and recent developments in the computer sci-
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was the Belkin Visiting Professor in the Department of Com-Apart from the LLS rule, this equation describes the only
puter Science and Applied Mathematics of the WeizmannPhysics” in the problem.

Institute of Science, and gratefully acknowledges its support. Turning to the data management issues of the two tasks
S.L.P. acknowledges financial support form the National Sciabove, we assume that thefibers, indexed from left to right
ence FoundatiofCMS-98004138 and from the National by i=12,... N have initial lifetimest;, which are indi-

Institute of Standards and TechnologfPO No. vidual independent deviatési.d.) assigned from some well-
43SBN867130 defined distribution function, in the present case the Weibull

distribution, Eqg.(2.8), with =1 andL=1. Moreover, we

assume that their initial load$; have been assigned, in the
APPENDIX: MERGE-SORT ALGORITHM present case uniformly with value=1. We assume that
FOR MEGAFIBER BUNDLE SIMULATION their respective stateS are unity. For reasons encountered

As mentioned, several investigations of time-dependenghortly, it is advantageous to employ fiber bundies whose
fiber bundle or network behavior under localized load sharSize is an integral power of 2, i.eN=2", wheren is an
ing have been reported in the literature. Their associatetit@ger.(This can be circumvented through a scheme of add-
simulations were limited typically te~103-10* fibers and N9 fictitious failed fibers with benign load-sharing influ-
approximations were often introduced to reduce the compu€nce) o o o
tational burden. While computer CPU speeds have since in- W€ assume that when an interior surviving fiber fails, its
creased by an order of magnitude, present day computel@ad is redlstn_buted equally onto !ts nearest surviving neigh-
remain incapable of significantly expanding the computal©rs, one on its left and one on its right. When a boundary
tional size to that required to better understand the scalin§urviving fiber fails it transfers all its load to the nearest
features of the underlying physical problem. The LLS rule/nterior survivor. See Sec. Il A for complete detai(@ther
we have used simplifies the analysis, but computational opf2oundary schemes, such as periodic boundary conditions, are
stacles remain. an easy adaptationThe immediate problem is to find these

At the outset, we believed that a wholesale reconstructioff€@rest surviving neighbors using the fewest possible opera-
of the computational algorithms had the potential to dramatiflons. i
cally improve our ability to undertake very large simulations. Next we create two integer arrays whdseelements are
When an individual fiber fails, the computational cost of cal-Pointers associated with th fibers. For convenience, we
culating the remaining lifetimes of its nearest neighbors ig€fer to these as forward and backward pointérsndb; .
very small, and require®(N) operation counts for the entire We also define functions based on these pointers, i.e.,
system ofN fibers. The overwhelming expense has resulted
from two tasks: The first is to identify the nearest surviving f(i)=f; and b(i)=b;. (A2)
neighbors onto which the load of the failed fiber must be
placed; the second is to establish which of all the remainindsimply stated, for theth fiber, f; identifies its nearest sur-
survivors will be the next to fail. Each of these tasks can beviving neighbor in the forwardor right) direction, andb;
shown to require®(N?) operations. Thus to proceed from identifies its nearest surviving neighbor in the backwamnd
simulations describing thousands of fibers to simulations deleft) direction. To locate the boundary or terminal survivors
scribing millions, a millionfold increase in the operation (whose load sharing rule differs from interior survivovse
count was anticipated. Using data management conceptstroduce a “flag.” For the left and right terminal survivors,
from computer science we now show how the first task cane setb;=0 andf;=0, respectively. This indexing scheme
be reduced to one requiring onl(N) operations and the is illustrated in Fig. 21. Initially, for all interior fibers for
second to one requirin@(N In N). whom S;#0, we setf;=i+1 andb;=i—1.

From a physical standpoint, at any given dimensionless For themth fiber, if it is an interior survivor the associ-
time t we can describe our array of fibers by three stateated entries in the up-to-date pointer arrays identify its right
variables per fiber. First, we know the status of ttiefiber ~ and left nearest survivors d§m) and b(m), respectively.
in terms of the stat&,, which is 0, if it is broken, and 1, if When themth fiber fails, we need to modify the stored point-
it is intact. ers associated with these survivéfsn) andb(m). The for-

Second, we know the current load applied to that fiber, ward pointer for fibeb(m) must becomd (m) (rather than

/i)

77 (A1)
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FIG. 21. Pointer arrays employed in identification of survivors. ’ ’

FIG. 22. Hierarchical structure employed in identification of pri-

m) and the backward pointer for fibd(m) must become L i
oritization of failures.

b(m) (rather tharm). Thus we make the assignments,

The preceding discussion illustrates that most of the

flb(m)]=1(m), O(N?) pairwise operations are redundant once we have some
information available as to the order of subsets of the com-
b[ f(m)]=b(m). (A3)  Plete set of fibers. The avoidance of redundant computations

and making algorithms ‘“computationally irreducible” is
widely employed in other disciplines. For example, the
Eor terminal survivors, if fibem was the left-most surviving Cooley—Tukey fast Fourier transform algorithm applied to
fiber, then we set data sets witiN elements reduces the otherwi@éN?) op-
eration task of performing a Fourier transform@gN In N)
b[f(m)]=0, (A4)  operations. Newman and Gabrielp45] explored a hierar-
chically organized set of fiber bundles, reduci@@") op-
erations toO(N?) operations, wheré was the number of

and if it was the right-most survivor we set levels in the hierarchy. Newmaet al. [46—49 also devel-
oped computationally irreducible algorithms in applications
f[b(m)]=0. (A5) to fiber bundle problems.

The class of computer science algorithms for rankimg
] ] ) o some criterion, such as failure timesf a list is often called

In so doing, elementn is effectively eliminated from all 5 “sort-merge” algorithm, and it can be adapted to situations
future computations, and of courss, is set to zero. Thus by \yhere the criterion is constantly being updated, but where
simply updating these two pointer arrays as fibers fail, Wegther information is available. So-called “heap-sort”’ meth-
have essentially eliminated the task of finding the nearesyqs are theoretically more efficient for relatively uniformly
survivors and this task has been relegated(dl). We can  istributed random data, but become less efficient and advan-
also update the loads on these surviving fibers and use thggeous if substantial clustering in the data occurs. The
contraction mapping, EqA1), to revise their projected life- scheme we describe below is not particularly efficient in
times. Our system of pointer arrays is closely related to whagerms of memory-utilization, but is simpler to program and
is called a “doubly linked list”(see Cormeret al. [56]) in more intuitive than memory-optimized dynamic sort-merge
the computer science literatur€This scheme can be ex- algorithms. Cormeret al. [56] offers an encyclopedic con-
panded to Consider more diStant SUrViVing neighbors Undqremporary VieW Of Sorting and Search a|gorithms_
more general local load-sharing rules. _ We consider establishing a hierarchical tableau as shown

We now turn our attention to finding the next fiber amongin Fig. 22. It is also worthwhile visualizing this as a binary
the survivors to fail. Scanning the entire array would takeyee where each element in the tableau can be regarded as a
O(N) operations, which must be performed as each ofthe node connecting “parents” to “children” and where chil-
fibers fails, making this part of the proble@(N?). We now  gren at the same level in the hierarchy of a given pafent
show how to avoid the scan and to |dent|fy the next fiber tOQrandparent, etﬁare regarded as “Sib"ngs_” The lowest or
fail in only O(log, N) operations. This is closely related to «p” |evel of the tree corresponds with the original projected
the task of finding a telephone number in a telephone directyjlure times(calculated as though the fiber loads,, re-

tory whoseN elements are already alphabetically ordered. Amain as their initial value =1), now designated via
sequential search would tak®(N) operations. A better ap-

proach is to “divide and conquer” where a hierarchy of

simpler problems is solved. In the telephone number anal- to;=t;, i=1,... N, (AB)

ogy, we first ask: “Is the number in the first half of the

telephone book?” If the answer initially is yes, we hence-

forth ignore the second half and repeat the question. We findith a similar tableau established to store the state variable
our number inO(log, N) operations. information’S; .
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Each pair of elements at the bottom of this tree comehrough load redistribution, or when it fails. Then, the fibers
together to form a new node. For example, assumingitisat designated X[(m+1)/2]—1 and 2<[(m+1)/2] corre-
odd, we construct from; andtg;.; a node spond with the original fiber and its sibling in the tree. We
now compute the lifetime and state of the parent of this pair,
namely ty 1) and S; m11). (We should also store at

) ) ) ) this level of the hierarchy, as observed earlier, the location of
(In this expression and in what follows, we will assume thatthe surviving fiber, if any, inM 1(m+1y2 contained in the

the quotient of two integers preserves only the integer part.original pair) Here, we have updated the status of two chil-

Similarly, we find for the state tableau that dren in order to obtain the status of their parent; this process
can be repeated solely by moving up the tree-tableau by
working along its branches instead of across its branches
at the lowest level. The other branches in the tree remain

: : . . . unaffected.
implying that a parent of the two children is intact if at least = \y/a note that when a fiber fails. we may not need to go

one of the subordinate elements is intact. The two precedi”@ompletely up all branches of the tree. To see why, we recall
equations, that take us from level 0 to level 1, can also bgnat we had previously identified that particular fiber as being
used to take us from levep to level p+1, wherep  the next to fail and, therefore, all of the timing, state variable,
=0,1,...,logN. Thust,; and S;; describe the elements ang position information stored in the tableaus are based on
within the range 2P~ to 2%i; S, ; is one only if at least  jts imminent failure. However, when the projected times to
one fiber in the subset is still intact whitg; describes the failure of its nearest neighbors are reduced, there generally is
earliest time to failure in that subset. It is also useful, at aa low probability that either of these neighbors will become
modest increase in memory utilization, to store additionakhe next fiber to fail. Thus it is highly advantageous to make
information at each node as we ascend the tree. For examplge implementation of this algorithm aware of the possibility
it is useful to know which elemeritat the lowest level cor- that the updating of the tableaus need not continue all the
responds to the position of the fiber with the earliest failureway to the top. Eliminating such unnecessary operations is
time contained within that range of elemenis fact, if we  analogous to “asynchronous” schemes encountered in com-
store only that index information as a pointer array, we avoidputer science and makes this implementation of the search
the need to store thg, ; tableau, thereby saving significant algorithm competitive with standard implementations of
memory with a barely noticeable increase in execution fime.sort-merge algorithmgCormenet al. [56]).
We achieve this by constructing an additional binary tree While simple in principle, our algorithm demands sub-
M, paralleling the role of the treg, ;. Whilet,; identifies  stantial care in developing its relatively complex logic. How-
the time for the first failure associated with thé @ements ever, in execution, this logic requires remarkably little com-
on that branchM , ; identifies its corresponding location. Al putational overhead. The theoretical speed enhancement of
of the above is readily established by induction. O(N/log, N) is directly realized, losing only a factor of sev-
The initial setting up of the tableaus requir@§N) op-  eral in its achievement. For our “megafiber’ or?®
erations, which is essentially the same as the number of op=1 048 576 fiber simulation, we could execute a single real-
erations required to identify the most shortlived fiber. How-ization in less than a minute, which otherwise would have
ever, once set up, the tableaus eliminate the need to scan thequired several weeks. Ten-thousand realizations required
list of surviving fibers, and operationally we need only go upseveral days, in contrast to an estimated century-long run.
the tree employing(In N) operations instead of across it in The algorithms presented here made it possible to explore
O(N) operations. To understand this, consider what must b&arge fiber bundle sizes over large numbers of realizations, as

t1 i+ 1y2=Min(to; ,toj+1)- (A7)

Sy +1)2=S0j + Spj+1— S0 X Spj+ 15 (A8)

done when thenth fiber has its projected lifetime reduced, desired.
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