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Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools
in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena
such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and ap-
proximate theories have been developed for bundles with various geometries and fiber load-sharing mecha-
nisms, but numerical verification has been hampered by severe computational demands in larger bundles. To
gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified
models typically assume either equal load sharing~ELS! among survivors, or local load sharing~LLS! where
a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved
exactly or asymptotically in increasing bundle size,N, yet still capture the essence of failure in real materials.
The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following
a power law in its load level with breakdown exponentr. Surviving fibers under fixed loads have remaining
lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and
new computational algorithms that greatly increase the bundle sizes that can be treated in large replications
~e.g., one million fibers in thousands of realizations!. In particular we develop an algorithm that adapts several
concepts and methods that are well-known among computer scientists, but relatively unknown among physi-
cists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various
regimes ofr that yield drastically different behavior asN increases. For 1/2<r<1, ELS and LLS have
remarkably similar behavior~they have identical lifetime distributions atr51) with approximate Gaussian
bundle lifetime statistics and a finite limiting mean. Forr.1 this Gaussian behavior also applies to ELS,
whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic
elements derived from critical cluster formation. For 0,r,1/2, ELS and LLS again behave similarly, but the
bundle lifetimes are dominated by a few long-lived fibers, and show characteristics of strongest link, extreme
value distributions, which apply exactly tor50.

DOI: 10.1103/PhysRevE.63.021507 PACS number~s!: 83.80.Ab, 62.20.Mk, 81.40.Np
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I. INTRODUCTION

A. Background

Statistical aspects of fracture processes in heterogen
materials have received increasing attention over the
two decades, not only because of their richness in phys
and mathematical phenomena, but also because of the p
bility of designing material microstructures that produ
highly reliable components. Such models have also bee
interest in geophysical settings to explain earthquake be
ior. While much attention has been devoted to static or fa
fracture strength, where material elements are assumed t
independent, models describing creep-rupture and fat
lifetime are perhaps even more important. In both cases,
portant issues are flaw character and interactions du
breakdown, dispersed versus localized damage evolution
associated forms of ultimate strength and lifetime distrib
tions ~especially lower-tail behavior!, and size or scale ef
fects. Building good theoretical models has proven straig
forward, but analyzing them has required delving in
statistical details of the interaction of various flaw featu
1063-651X/2001/63~2!/021507~20!/$15.00 63 0215
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and failure configurations, which has proven to be dec
tively difficult. Behavior is rarely captured by mean fie
approaches that otherwise work well in studying transp
and percolation determined properties.

One approach to modeling such detail has been to dev
discrete network or lattice models in various dimensio
where the geometry of the lattice~hexagonal, square, cubic
etc.!, the load redistribution from failed to surviving ele
ments, and the probability model for element failure must
specified. Time dependence~including load-history effects!
typically enters through the element failure model, but it a
can appear through the load redistribution model. The res
ing breakdown behavior, whether localized or dispersed
strongly influenced by the variability built into the eleme
failure model and the intensity of stress concentration occ
ring in load redistribution. Subtle changes in parameter v
ues can lead to dramatic changes in breakdown statistic

The earliest and simplest models appearing in the lite
ture are fiber bundle models. In the case of fast fracture,
classic work is that of Daniels@1# on the strength of simple
fiber bundles under equal load sharing~ELS! among non-
©2001 The American Physical Society07-1
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failed fibers. A key result from a highly nontrivial analysis
that the strength is asymptotically Gaussian with variabi
decreasing inversely as the square-root of the number o
bers. More realistic material failure models have often
sumed a chain-of-bundles structure@2–4#, where bundle
length is a characteristic length of fiber load transfer a
material strength is determined by the weakest bundle.
resulting strength follows a double-exponential, extre
value distribution associated with Gaussian distributed lin

In the case of time-dependent breakdown, early work
the lifetime of simple fiber bundles under ELS and und
steady load was carried out by Coleman@5–7#, with subse-
quent generalizations by Phoenix@8,9#. Corresponding
chain-of-bundles versions were also developed@3,6#. The re-
sulting lifetime distributions are similar in form to the stat
case~with time replacing stress!. Though analytically trac-
table, these dispersed failure ‘‘mean field’’ models are m
applicable to the strength of weakly bonded, fibrous mat
als than to tightly bonded materials with elastic fiber lo
transfer.

Study of the failure of fiber-reinforced composites wi
strong, well-bonded, elastic matrices has led to ano
branch of network models, where the load sharing is m
localized @10–17#, though still within a chain-of-bundles
framework. In the case of static strength@10–14#, fiber ele-
ments are often assumed to follow a Weibull distributi
@18#, but failed elements are assumed to redistribute th
loads locally onto nearby unfailed neighbors, increasing th
probabilities of failure and thus the likelihood of a cat
strophic cascade. Rendering these models analytically t
table has required highly idealized assumptions in the fo
of ‘‘load-sharing rules’’ on the local fiber load redistributio
mechanism. One such model, called local load sha
~LLS!, assumes that the loads of failed fibers are shifted
equal portions onto the nearest flanking survivors. For pla
versions under LLS with one-dimensional bundle structu
various recursive@13,14# and asymptotic methods@12# have
been used with success in the case of static strength.
sions with time-dependent breakdown of fibers have a
been developed@13–17#. A more realistic form of localized
load-sharing is based on shear-lag models after Hedge
@19–21#, and is less severe than LLS with some load shif
to more distant neighbors. Recent progress on static stre
versions of such models is summarized in a review article
Phoenix and Beyerlein@22#.

Network or lattice models of material failure have al
received attention in the statistical physics literature, parti
larly in connection to percolation theory. Because of
strong relationship to mechanical failure, conductivity brea
down in random fuse networks has been studied extensi
@23–26#. Such models often consider a planar, square lat
of finite size where the conducting elements are initia
fuses with probabilityp or insulators with probabilityq51
2p, assumptions typical of percolation models. The fu
initially have identical breakdown voltagev0, and thus, the
distribution for element strength is simple and discrete.
voltage gradient is applied along one axis, and calculation
the currents in all the intact fuses is done through numer
solution of Kirchhoff’s laws with the resulting localized loa
02150
fi-
-

d
e

e
s.
n
r

e
i-

er
e

ir
ir

c-

g
in
ar
,

er-
o

th
d
th
y

-

-
ly
e

s

of
al

sharing being quite similar to the shear-lag models@27#. The
strength of the lattice is the largest voltage gradient that
network can sustain before transverse propagation by a w
dering cracklike cluster of burnt fuses.

Despite their simplicity and knowledge from percolatio
theory, these networks have proven to be deceptively d
cult to analyze. Monte Carlo simulations on sample fuse n
works have been carried out@23–25# to empirically deter-
mine the distributions of the critical voltage gradie
~strength! that generates a catastrophic cluster. Because
the computational demands, results have been generated
for relatively small lattices up to about 2003200. Neverthe-
less the critical voltage gradient was seen to decrease
versely as a power of the logarithm of the network size w
no apparent positive lower bound.

To explain this size dependence and observed shap
the breakdown voltage distributions, Duxbury and c
workers@24,25# considered the effects of defect clusters in
large lattice in the form of isolated contiguous transve
rows of missing fuse elements, focusing on the current
hancement at the row tips. Considering the statistics of
largest critical defect cluster, namely a transverse slit
‘‘crack,’’ they appealed to the statistical theory of extreme
and determined approximately the distribution function
the normalized breakdown voltage for smallq. They ob-
tained a particular double exponential form with depende
on network size. Their results were supported by Mo
Carlo simulations on networks up to 2003200 in size@24#.

In elastic spring networks with element breakdown stru
ture analogous to the random fuse networks above, the
eral size scalings and distributional forms above have
always been apparent from simulations@28#. Various con-
tinuous distributions for element strength have also b
used@28#. Some of these forms appeared to yield scalin
similar to those in percolation, rather than as described ab
for the random fuse networks. Hansenet al. @29# argued that,
for p above the percolation threshold, rescaling through
renormalization argument leads to the disappearance of
order as the effective value ofp, defined at a given scale
converges to unity as the network scale grows large. T
such models were thought to be asymptotically equivalen
a disorderless system with a finite average strength in
infinite lattice limit, much like ELS fiber bundle models
Perhaps the main origin of controversy over the particu
form of the size scaling is that simulations covering ma
orders of magnitude in sample dimensions are necessa
arrive at definitive conclusions. In most cases, such s
have been inaccessible by Monte Carlo simulation alone
lattices approaching 5003500 in size have rapidly becom
too demanding computationally. Also, subtle dependenc
on the form of the distribution for element strength were n
fully understood. Both are important issues in the pres
paper.

Regardless of their viewpoints, many investigators ha
turned to rigorous study of idealized, one-dimensional m
els @30–34# in an attempt to put approximate analyses a
interpretations from simulations of more complex networ
on firmer ground. In the case of static strength, such mod
which are often variations on the LLS models of Harlow a
7-2
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Phoenix@10,11,30#, are analytically solvable, rich in behav
ior, and qualitatively show many features seen in simu
tions. In most cases, results in LLS fiber bundle models s
port the logarithmic size scaling mentioned abov
Generally, such results depend on the load-sharing sch
~LLS versus ELS! as well as on the assumed form of th
distribution for element failure. Asymptotic analysis coupl
to Monte Carlo simulation has led to improved forms
material strength distributions in recent work@22,35,36#.

In localized load-sharing settings involving time
dependent breakdown of elements, some early work on
tice failure was performed by Gotlibet al. @37,38#. Curtin
and Scher@39–42# also developed such models, and by d
creasing the value of the power-law breakdown exponenr,
they uncovered transitions from logarithmic scaling to glo
percolationlike scaling where the lifetime had a finite limit
network size. Interesting power-law behavior has been
served by Hansenet al. @43#, and Rouxet al. @44# have re-
corded some insights into the subtleties of such problem

Subtle scalings and transitions have also been notice
fiber bundle models with hierarchical load-sharing, as d
cussed in Newmanet al. @45–49#. Much of the motivation in
these models emerged from the need to understand the
tistics of time sequences and magnitudes of earthquakes
mashita and Knopoff~YK ! @50# used a deterministic 2D
antiplane continuum mechanics model of stress corros
subcritical crack growth and fusion to simulate earthqua
foreshock behavior. The continuum model corresponds
the LLS fiber bundle abstraction. The subcritical cra
growth rate model corresponds to the power-law breakdo
model for fiber elements. Experimentally the power-law e
ponentr is very large, with exponents ranging from 10
170 for rocks under Mode I deformation@51#. The large
values ofr suggest perhaps that exponential growth la
should be preferred over power laws; exponential grow
rates are usually considered indicative of activation p
cesses and are suggestive of the importance of water in e
quake faults as a corrosive agent in the earthquake pro
@52#, a point of view corroborated by the fact that water is
excellent solvent of the silicate bond in SiO2. Despite this
connection, YK @50# used the power-law form with very
larger for its computational advantages, as do we. As Ph
nix and Tierney@16# have shown, however, the power la
also has a firm interpretation as a model for bond fail
under stress due to activation processes, whereby the e
nentr is inversely proportional to absolute temperature.

Because of the continuum nature of the YK model, t
stress redistribution law has long range behavior that falls
in distancex as x21/2 for isolated fractures and in a mor
complex manner for stress fields in the gaps between clo
spaced cracks. This load-sharing behavior is much mor
line with that seen in the elastic lattices studied by Curtin a
coworkers@39–42#, than in the LLS bundle model. This sug
gests that the 2D system should have properties interme
between the LLS and ELS bundles we study. The numer
results of YK@50# indicate that their system displays a cri
cal point behavior shortly before complete failure an
hence, that interaction among cracks is vitally importa
This suggests that system lifetimes should not be gauge
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the duration of fracture activity when the population
cracks is dilute; rather the precursory behavior should
scaled relative to the time of failure of the entire system.
some extent this is confirmed in the work of Curtin a
coworkers@41,42#. What is also seen, however, is that th
effect of interactions depends strongly on the value of
breakdown exponentr and the size of the system. Sma
systems show dispersed ELS-like behavior regardless of
value of r. For larger systems, however, divergence fro
ELS-like behavior eventually occurs forr>2 as interactions
play a more subdued role and failure becomes dominated
a single growing crack. The goal of the current paper is
shed further light on these issues.

B. Overview of paper and main results

In this paper we study in detail the one-dimension
bundle model of time-dependent failure under LLS. T
probability model for fiber element breakdown is a powe
law hazard rate model in terms of an exponentr and with
exponential lifetime features under fixed load. Versions
this fiber breakdown model have been used in many prev
works @7–9,13–17,37–44,46,47#.

In Sec. II we describe the basic bundle model, ELS a
LLS load-sharing assumptions, and the fiber lifetime mod
In Sec. III we discuss theory for ELS for 0,r because it
plays a key role in understanding the behavior of LLS
0,r<1. We discuss the special caser51 where ELS and
LLS have the same lifetime distributions, though differe
tendencies of clustering of failed fibers. In the upper end
this regime, 1/2,r<1, we give results where the distribu
tion for bundle lifetime is asymptotically Gaussian wi
known mean and variance.

In Sec. IV we discuss LLS theory. We consider first t
caser.1 where the asymptotic analysis relies onr being
large. Unlike in ELS, we find brittlelike behavior, cluste
nucleation, and growth of an eventual catastrophic crack.
derive the asymptotic distribution for lifetime in terms of
characteristic distribution function,W(t), used in a weakes
local volume representation. We also consider failure r
behavior for 0,r,1 making the connection to ELS. Resul
for the degenerate caser50 are discussed where lifetime
governed by the the largest of the fiber lifetimes, and
associated extreme value theory applies. We investigate
extent to which these results, with minor modification
might apply to the case 0,r!1/2. In many material set-
tings, the important regime isr.1, but as mentioned earlier
r may vary inversely with absolute temperature. Many m
terials such as silicon nitride ceramics show a ductile
brittle transition at high temperature, and the transitional
havior we uncover atr51 exhibits this feature.

In Sec. V we present a comparison of LLS~and ELS!
theory to Monte Carlo simulation results for LLS bundles
up to one million fibers in replications greater than 100
Favorable comparisons are obtained between analytic th
and computational experiment. Section VI concludes wit
discussion of some extensions and connections to ea
work.
7-3
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We defer to the Appendix a discussion of the compu
tional algorithms developed for simulations of bundle failu
in kilo-replications of megasize bundles. Our ability to pe
form the necessary Monte Carlo simulations is the dir
outcome of these advances. Readers not concerned wit
ability to perform such simulations can omit the Append
while those who wish to develop this capability will find th
Appendix and its associated reference to be indispensabl
particular, we discuss the difficulties in keeping track of t
effects of load history on each fiber, determining on wh
fibers to place the load shed by a fiber that has just fai
and determining the next fiber to fail in the sequence as w
as its failure time. By using pointer arrays and a spec
purpose adaptation of merge-sort algorithms in identify
and prioritizing failures, we are able to reduce the two ta
that would have requiredO(N2) operations toO(N) and
O(N ln N) operations, respectively.

II. MODEL ASSUMPTIONS

A. Bundle geometry and load sharing rules

We consider a 1D fiber bundle in the form of a line
array of N fiber elements numbered from 1 toN from the
left. We apply a positive fixed loadL to the bundle on a pe
fiber basis; that is, initially each fiber is intact and carr
loadL. As time passes, fibers break leaving an array of fa
and surviving fibers. Surviving fibers in an array share lo
according to a load-sharing rule and we will consider t
particular rules.

The first rule is called local load sharing~LLS!. In this
rule there are three types of survivors: interior survivo
boundary survivors, and a sole survivor. An interior surviv
has at least one other survivor somewhere to its left and
other somewhere to its right. A boundary survivor has
survivors on one side~though possibly some failures!, but at
least one survivor somewhere on its other side. A sole
vivor is the only survivor in the bundle. For an interior fib
adjacent tor contiguous failed fibers counting on both its le
and right, its load concentration factor,Kr , follows

Kr511
r

2
, ~2.1!

where we also takeK051. This means that its actual load
KrL. On the other hand a boundary fiber has load concen
tion factorKr ,b , which follows

Kr ,b511
r

2
1

b

2
, ~2.2!

whereb is the number of adjacent broken fibers between
and the boundary andr is as defined before~including also
the b fibers!. A sole survivor has load concentrationN. An
alternative view of the rule is that a failed fiber shifts half
its load to the closest survivor on its left and half to t
closest survivor on its right, unless there is no such survi
on one side in which case all its load goes to the survivor
the other.
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The second rule is called equal load sharing~ELS!. In this
rule all nonfailed fibers in the bundle share the appl
bundle load equally and all failed fibers support no loa
Thus if j out of N fibers have failed, the surviving fibers eac
have load concentration factor

K j
ELS5

N

N2 j
, j 50,1,2, . . . ,N21. ~2.3!

B. Stochastic fiber lifetime model

Fiber elements are assumed statistically identical and
dependent under a given load history, and the lifetime dis
bution for a fiber element in terms of its load histor
l (t),t>0, follows

F„t;l ~• !…512expH 2CS E
0

t

k@ l ~s!#dsD J , ~2.4!

wherek(x), x>0 is called the breakdown rule andC(x),
x>0 is called the hazard function. In the present case,
assume the power-law breakdown rule

k~x!5xr, ~2.5!

with exponentr>0, and the Weibull hazard function

C~x!5xb, ~2.6!

with Weibull exponentb>0, where we takeb51. When a
fiber is under fixed load

l ~ t !5L.0, ~2.7!

its lifetime distribution is the Weibull distribution

F~ t;L !512exp@2~ t/tL!b#, ~2.8!

where tL5L2r, but by takingb51, as we are doing, this
distribution is actually an exponential distribution with me
and standard deviation bothtL .

In the fiber bundle model we have conveniently taken a
scale constants in the breakdown rule or hazard function
unity. Any scale constants that do arise in practice can
absorbed into normalizing load and time parameters. Hen
forth we will think of both the load variableL and time
variablet as dimensionless.

Takingb51 renders a fiber memoryless, thus simplifyin
the model. That is, its remaining lifetime given survival
time t is independent of its load history up to timet, and
under its current fixed load is also exponentially distribut
as though it were new. In Monte Carlo simulations of th
type of problem, unlike the common approach of small
cremental time steps based only on the current configura
of failed fibers and surviving fiber loads, our simulation a
gorithm will not use this memoryless property, and thus, c
be used in the general casebÞ1. Our approach can be see
however, to be statistically equivalent@8,9,14–17,46#.

The basic idea is that for a given fiber we need gene
only one random number once and for all, this number be
its nominal lifetimet0 under unit load as generated using E
7-4
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~2.8! with L51. Then given its actual load history,l (t)
>L,t>0 we can determine its actual lifetime,t l , from the
integral in Eq.~2.4! through solving

E
0

t l

k@ l ~s!#ds5t0 . ~2.9!

This is done for each fiber. Thus the main task reduce
tracking each fiber over time by way of evaluating its in
gral on the left-hand side of Eq.~2.9!, using a continually
updated version of its load history as neighbors fail and t
ing the upper limit as current timet. Then its own failure
time is the timet l when the integral first equalst0. This is
the concept of a standard representative fiber used in p
ous works@14–17#, and the contraction mapping in Newma
et al. @46#, which is discussed in the Appendix. Fortunate
the contraction mapping can be set up so that no integra
is necessary.

III. THEORETICAL RESULTS UNDER ELS

A. Mean and variance of ELS bundle lifetime

We consider the lifetime behavior of bundles under E
because of the special role it plays in interpreting LLS
0,r<1. Under ELS the hazard rate for the next fiber to f
after j ,N have already failed is

l j5~N2 j !k~K j
ELSL !5~N2 j !S NL

N2 j D
r

5Nr~N2 j !12rLr.

~3.1!

The timesDTj , j 51, . . . ,N21 between failures are inde
pendent and follow the exponential distribution

F j~ t !512exp~2l j t !, t>0, ~3.2!

with respective means E@DTj #51/l j and variances
Var@DTj #51/l j

2 . The bundle time to failure,TN , is the sum
of the times between failures.

The mean time to bundle failure is

E@TN#5 (
j 50

N21
1

l j
5

L2r

N (
j 50

N21 S 1

12 j /ND 12r

'L2rE
0

(N21)/NS 1

12t D
12r

dt

5
L2r

r S 12
1

NrD . ~3.3!

By similar arguments the time until a given fraction,f
5 j /N, of fibers has failed in a very large bundle is

t~f!5~L2r/r!@12~12f!r#, 0,f,1. ~3.4!

For the variance in the bundle lifetime there are vario
regimes forr. For r>1/2 we have
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Var@TN#5 (
j 50

N21
1

l j
2

5
L22r

N2 (
j 50

N21 S 1

12 j /ND 2(12r)

'
L22r

N E
0

(N21)/NS 1

12t D
2(12r)

dt

5
L22r

~2r21!N S 12
1

N2r21D . ~3.5!

For r51/2 a similar calculation leads to

Var@TN#'
L21ln N

N
. ~3.6!

For 0,r,1/2, we obtain

Var@TN#'
L22r

122r S 1

N2r 2
1

ND . ~3.7!

Last, in the limitr→0 we have

Var@TN#'~121/N!. ~3.8!

We will refer later to the standard deviation, SD@TN#, and
the coefficient of variation, CV@TN#, of bundle lifetime given
respectively by

SD@TN#5AVar@TN# ~3.9!

and

CV@TN#5
AVar@TN#

E@TN#
. ~3.10!

B. ELS bundle lifetime distributions

As summarized in Kelley@53#, it is known forr.2/3 that
the bundle lifetimeTN asymptotically follows a norma
~Gaussian! distribution asN→` with mean E@TN# and stan-
dard deviationAVar@TN#. That is, the lifetime distribution,
GN(t), follows

GN~ t !'F†~ t2E@TN# !/AVar@TN#‡, ~3.11!

where

F~z!5
1

A2p
E

2`

z

e2y2/2dy. ~3.12!

This is a sufficient condition. We conjecture that th
asymptotic normality holds for allr>1/2. The difficulty in
any proof, however, is that asr decreases the bundle lifetim
becomes dominated by the last few fiber failures.

The caser51 has special significance as a transiti
value in LLS. In ELS the hazard rates arel j5NL for all j
50,1,2, . . . ,N21. Thus the timesDTj between failures are
independent and identically distributed following the exp
nential distribution with means E@DTj #51/l j51/(NL) and
variances Var@DTj #51/l j

251/(NL)2. This is true for any
7-5
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load-sharing rule that conserves total bundle load~including
LLS!, since the sums of the hazard rates are alwaysNL.
Thus forr51 the distribution functionGN(t) is the gamma
distribution

GN~ t !512e2NLtF (
j 50

N21
~NLt! j

j ! G , t>0, ~3.13!

with mean E@TN#51/L and variance Var@TN#51/(NL2).
Also, TN asymptotically follows a normal~Gaussian! distri-
bution asN→` with the same mean and standard deviati
That is

GN~ t !'F@AN~Lt21!#. ~3.14!

Because of the behavior we encounter in the next sec
under LLS forr.1, it is also interesting to consider

WN~ t !512@12GN~ t !#1/N, ~3.15!

for r51 ~though for ELS a slight extension applies tor
>1). According to Kelley@53# it turns out that

lim
N→`

WN~ t !5H 0, 0<Lt,1,

12Lte12Lt, 1<Lt.
~3.16!

We note that the limit is zero for 0<t,1, which will not be
true later under LLS whenr.1.

For the caser50, again ELS and LLS will yield the sam
results because the failure rate for fibers is independent o
loads on them.

C. Fiber failure rates under ELS for small r

Because of the connection between ELS and LLS fo
<r<1, we later compare their fiber failure rates in th
range. Under ELS, whenj !N2 j , that is, j !N/2, we have

l j5~N2 j !S NL

N2 j D
r

5~N2 j !S 11
j

N2 j D
r

Lr

'@~N2 j !1 j r#Lr, ~3.17!

for j 50,1,2, . . . , where the last expression applies to sm
r. For j @N2 j , that is, j @N/2, we have

l j5~N2 j !S NL

N2 j D
r

5~N2 j !S j

N2 j D
rS 11

N2 j

j D r

Lr

' j r~N2 j !12rS 11r
N2 j

j DLr

A

lN215NrLr'~N21!rS 11r
1

N21DLr. ~3.18!
02150
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IV. THEORETICAL RESULTS UNDER LLS

A. LLS bundle lifetime behavior for rÌ1

In the following analysis the arguments are based
r@1, though the results will work well forr quite close to
one. Our main goal is to determine the distribution functio
GN(t), for bundle lifetime where we consider the bundles
be large enough to ignore boundary effects. We begin
considering the distribution function,GN

(k)(t), for the time to
formation of a cluster ofk contiguous breaks wherek
51,2, . . . .Appealing to results in Tierney@15# and Phoenix
and Tierney@16#, we have

GN
(k)~ t !'12exp$2Nck~L !tk%, ~4.1!

for t>0 not too large, wherec0(L)51, c1(L)5k(L),
c2(L)5k(L)k(K1L), and generally

ck~L !5
1

k
k~Kk21L !(

j 50

k21

cj~L !ck2 j 21~L !. ~4.2!

~This result does not requirer@1.! Under the power-law
breakdown rule we have

k~K jL !5K j
rLr, ~4.3!

so that

ck~L !5Lkrck~1!. ~4.4!

For r@1, we have the approximation

ck~L !'Lkr
2k21

k! )
j 51

k

K j 21
r . ~4.5!

These results require time to be small enough for
k-cluster to be ‘‘subcritical.’’ Physically this means that th
cluster has not yet reached the stage where it accelerate
growth and becomes a catastrophic crack, which requ
additional time. A main goal is to obtain the lifetime distr
bution,GN(t), in the form

GN~ t !'12exp$2NW~ t !%, t>0, ~4.6!

whereW(t) is called the characteristic distribution functio
for failure of a fictitious element, which captures the loc
failure evolution including stress redistribution@13,14#. As a
first step to estimatingW(t) we consider@15,16# the inter-
sections of thek and k11 versions ofGN

(k)(t). This yields
the intersection points,tk given by

ck~L !5ck11~L !tk , k>1, ~4.7!

which reduces forr@1 to

tk'L2r S k11

2 D S 2

k12D r

. ~4.8!

We then consider the sequence of valuesWk* defined as
7-6
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Wk* 5ck~L !tk
k

5Lkr
1

k!
2k21)

j 51

k S j 11

2 D r

L2krS k11

2 D kS 2

k12D kr

5F ~k12!!

~k12!k12G r21

~k12!r21S k11

k12D k11 k12

2
, ~4.9!

wherek51,2, . . . . ByStirling’s formula,

~k12!!;A2p~k12!k1211/2e2(k12), ~4.10!

and thus

Wk* '
~A2p!r21

2
~k12!(r21)/2e2(k12)(r21)

3~k12!re2(k11)/(k12)

'
~A2p!r21

2
~k12!(3r21)/2e2(k12)(r21)21.

~4.11!

Next we obtain a relationship betweenk and tk , and we see
from Eq. ~4.8! that

k5k~ t !'2~Lrt !21/(r21)22, ~4.12!

where we have dropped the subscriptk on t. Letting W* (t)
5Wk(t)* we thus obtain

W* ~ t !'C* S a

Lrt D
f* /(r21)

expF2~r21!S a

Lrt D
1/(r21)G ,

~4.13!

where

f* 5
3r21

2
, ~4.14!

a52r21, ~4.15!

and

C* 5
~A2p!r21

2e
. ~4.16!

This is our first approximation toW(t), which is based on
the time to formation of a criticalk-cluster at timet as
though the bundle then fails instantaneously@15,16#.

We can also speak of a critical cluster size,k* , which is
the value ofk(t) that solvesNWk(t)* 51. Roughly speaking
k* is the cluster size at the onset of failure of a ‘‘typica
specimen~with lifetime close to the median lifetime! of size
N. It can be shown by inverting this expression thatk* de-
pends onN following

k* 125
ln~C* N!

r21
~11«N* !, ~4.17!
02150
where

«N* '
f* $ ln@ ln~C* N!#2 ln~2r22!%

ln~C* N!2f*
. ~4.18!

So far we have considered the distribution for the time
critical cluster formation. However, as noted by Curtin a
Scher@41#, it takes significant additional time for the cluste
to become catastrophic. To gain insight into this time diffe
ence we adapt to the present setting a solution by Yas
@54# and Feigin and Yaschin@55# for power-law growth of a
one-direction sequence of failures of fresh elements. Mak
this correspondence requiresr@1. First we write out their
solution using their hazard rates written in a form that can
matched to ours for a growing failure cluster in a bund
which can grow in either direction. We then write out all th
idealized local load-sharing versions of the hazard rates,
then match these to those used in the Feigin–Yaschin~FY!
solution. Finally we make adjustments for those entr
where matching does not occur.

To adapt the FY result, we take~in our notation and cor-
recting a minor algebraic error!

l j
FY5Lr212r~ j 11!r, j 50,1,2, . . . , ~4.19!

and write their result as

WFY~ t !'
2

~A2p!12r
A r

r21S a

tLrD 1/2

3expH 2g~r!~r21!S a

tLrD 1/(r21)J ,

~4.20!

where

g~r!5Fsin~p/r!

p/r Gr/(12r)

. ~4.21!

In the case of LLS, the hazard rates are given by

l05Lr5
1

2
Lr212r~2!r, ~4.22!

and

l j5Lr212r~ j 12!r, j 51,2,3, . . . , ~4.23!

since for a contiguous cluster ofj breaksK j5( j 12)/2 and
there are two overloaded flanking fibers at risk. These can
connected to those of FY by noting that

l05
1

2
l1

FY ~4.24!

and
7-7
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l j5l j 11
FY , j 51,2,3, . . . . ~4.25!

The main difference between the FY case and LLS is t
in LLS there is no equivalent element with failure with ra
l0

FY , and the failure rate in LLS corresponding tol1
FY is

actually half that value. This occurs because, whenr@1, a
failure sequence in LLS involves one initiator followed b
propagation through neighbors of which there are alw
two choices, one on each side. The latter difficulty can
treated by thinking in terms ofN/2 fibers rather thanN fi-
bers, and the former by dividing their result by 212rtLr.
This is seen by studying the appropriate convolution a
recognizing that, in the FY case, the total time can be
composed into an initiation time under hazard ratel0

FY and a
propagation time involving the sums of the times under
remaining hazard ratesl1

FY , l2
FY, . . . .

With these constructions, we estimateW(t) as

Ŵ~ t !'ĈS a

tLrD f̂/(r21)

expH 2g~r!~r21!S a

tLrD 1/(r21)J ,

~4.26!

where

Ĉ5~A2p!r21A r

r21
~4.27!

and

f̂53~r21!/2, ~4.28!

and againa52r21.
This result differs from the result forW* (t) obtained ear-

lier for the time to form a critical clusterk* . The key differ-
ence is the introduction of the factorg(r) in the exponential.
There is also a lesser difference betweenf̂ and f* and a
small difference betweenĈ andC* . The main effect is cap-
tured, however, in noting that

g~r!S a

Lrt D
1/(r21)

5F a

g~r!2(r21)Lrt G
1/(r21)

~4.29!

and

g~r!2(r21)5Fsin~p/r!

p/r Gr

'12p2/~6r!. ~4.30!

The existence of the factorg(r) compared with unity has
the effect of lengthening the characteristic time to failuret̂ f
as compared to the characteristic timet* to critical cluster
formation, obtained by solvingNŴ( t̂ f)51 and NW* (t* )
51, respectively. The result is

t̂ f'
t*

$@sin~p/r!#/~p/r!%r
'

t*

12p2/~6r!
. ~4.31!

Note from the middle expression that the two times dive
asr→1 from above.
02150
t
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We can also determine the size effect for the characte
tic failure time, t̂ f . Upon invertingNŴ(t f)51 asymptoti-
cally, we obtain

t̂ f'aL2rF r21

ln~ĈN!~11 «̂N!
G r21

, ~4.32!

where

«̂N'
f̂$ ln@ ln~ĈN!#2 ln~r21!%

ln~ĈN!2f̂
. ~4.33!

Here t̂ f is also approximately the median lifetime. Even wi
the correction«̂N , accuracy of this result requiresN large
whereby ln(ĈN)@f̂53(r21)/2. This points to the difficulty
in using Monte Carlo simulations on bundles of limited si
to reveal true large-scale behavior.

B. LLS bundle lifetime behavior for 0ËrÏ1

We begin by considering the caser51, wherein the fiber
failure rate is exactly the load on it. Since the fibers a
statistically independent and their loads sum to the bun
load NL, the failure rate for thej th fiber to fail, irrespective
of position and given thatj 21 have already failed, is also
NL. Thus this failure rate is independent of the number a
configuration of failed fibers up to that point. Thus LLS h
the same distribution for times between successive fiber
ures as ELS, as mentioned earlier. Thus the lifetime dis
bution for the bundle,GN(t), is also given by Eq.~3.13! and
asymptotically by Eq.~3.14!. ~This is not true, however
when bÞ1.! This result forr51 suggests that ELS wil
play a key role in the regime 0,r<1.

Despite this equivalence in bundle lifetime forr51, a
difference between LLS and ELS is that fiber failures will
more clustered in LLS where there will be more large clu
ters and fewer small clusters. The failure rates for fibers n
to clusters are always higher than for survivors with no fai
neighbors. Under ELS clustering will be totally at rando
with a pattern as in 1D percolation withN2 j broken fibers.
Also in LLS the spectrum of loads carried by surviving fibe
for j 51, . . . ,N21 will be spread out whereas in ELS, a
the loads are simplyNL/(N2 j ). Extending our earlier re-
sult, Eq.~4.2!, under LLS forr.1 to the present case ofr
51, we see that the number of clusters of sizek at time t is
approximatelyNck(1)(Lt)k wherec0(1)51 and

ck~1!5
k11

2k (
j 50

k21

cj~1!ck2 j 21~1!. ~4.34!

From this we could estimate the LLS load spectrum.
For 0,r,1 we have no theory for the lifetime distribu

tion under LLS except to say that we will find computatio
ally, and supported by fiber failure rate arguments presen
next, that the differences between ELS and LLS will
minor.
7-8
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C. Fiber failure rates under LLS for small r

The fiber failure rate for 0< j !N is

l0L2r5N, ~4.35!

l1L2r5~N23!12S 11
1

2D r

5N2112H S 11
1

2D r

21J
'N211r 2 ln~3/2!1O~r2!, ~4.36!

l2L2r5~N26!14S 11
1

2D r

5N2214H S 11
1

2D r

21J
'N2212r 2 ln~3/2!1O~r2!,

A ~4.37!

l jL
2r'N2 j 1 j r 2 ln~3/2!1O~r2!, ~4.38!

where the latter approximations in each case require 0,r
!1. These approximations require the breaks to be w
separated, which implies that failures of fresh fibers
much more likely than failures in fibers next to old break
which basically means thatN2 j @ j r 2 ln(3/2). Under ELS,
we recall from Eq.~3.17! that l jL

2r'N2 j 1 j r. Also as
r→1, it can be shown thatl jL

2r'N1 j 3(r21)ln(3/2) as
compared tol jL

2r'N1 j (r21) for ELS. Thus for 0,r
!1 the hazard rates are only slightly smaller under LLS th
under ELS.

Next we look at 1! j <N, and we note first that for any
configuration of ‘‘X’’s and ‘‘O’’s, i.e., failed and surviving
fibers, if there are strings of ‘‘X’’s then the hazard rate is le
than if all ‘‘X’’s are isolated, because

~2k22!12S 11
k

r D r

,2kS 11
1

r D r

. ~4.39!

But as j increases there will be many strings of ‘‘X’’s an
eventually asj→N, only isolated ‘‘O’’s exist. In that case
we consider strings like

~4.40!

and let

p5 j /N, q512 j /N. ~4.41!

Then given surviving fiber ‘‘O’’ sandwiched between strin
of breaks ‘‘X’’s as above, the probability it has exactlyk
broken neighbors is (k11)q2pk.

This result assumes breaks are positioned at rand
which is approximately true for smallr. ~For r nearer to 1
02150
ll
e
,

n

s

m,

there could be a small difference because ‘‘X’’s will tend
clump more as they develop.! We have

l jL
2r'Nq(

k50

`

~k11!S k12

2 Dq2pk

5
Nq3

2rp2 H (
k50

`

~k12!r11pk122 (
k50

`

~k12!rpk12J
5

Nq3

2rp2H (
k50

`

kr11pk2 (
k50

`

~k12!rpkJ . ~4.42!

Moreover,

(
k50

`

kapk'E
0

`

taexp@2t ln~1/p!#dt

5$ ln@1/~12q!#%a11G~a11!

'~1/q!a11aG~a!, ~4.43!

so under LLS,

l jL
2r'

Nq3

2rp2H 1

qr12
~r11!G~r11!2

1

qr11
rG~r!J

5Nq12rF 1

2r~12q!2GG~r11!@~r11!2q#.

~4.44!

When 0,r!1, however, we have

1

2r~12q!2G~r11!$~r11!2q%'
22r

p
, ~4.45!

sincep512q, so we see that

l jL
2r'Nq12r

1

2rp
, ~4.46!

compared to the ELS result, Eq.~3.18!, rewritten as

l jL
2r5Nq12r. ~4.47!

So there is little difference between ELS and LLS asj→N
sincep5 j /N→1.

Note that forr51, the LLS result is

l jL
2r5

Nq3

2 (
k50

`

~k11!~k12!pk5
Nq3

2

2

~12p!3 5N,

~4.48!

as it should be.
In summary, in comparing timesDTj between fiber fail-

ures in LLS and ELS, there is no difference in fiber failu
rates forr50 andr51, and for 0,r,1 there is little dif-
ference at the extremes 0< j !N and j→N. Actually j→N
is most important because theDTj ’s are relatively the long-
est there. Thus LLS may give slightly longer bundle failu
timesTN than ELS, but the shapes of the distributions sho
be similar.
7-9
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D. Lifetime behavior for 0Ïr™1

Whenr50, the fiber failure rates are all the same sin
k(KrL)5(KrL)051, and the times between fiber failure
have rates

l j5N2 j , j 50,1, . . . ,N21. ~4.49!

By definition, the lifetime of the bundle is just the maximu
lifetime found among the fibers, so that

GN~ t !5~12e2t!N'exp~2Ne2t!5exp@2e2(t2 ln N)#.

~4.50!

The median lifetimet̂ N,1/2, from GN( t̂ N,1/2)51/2, is

t̂ N,1/2; ln N2 ln ln 2. ~4.51!

The a-spread of the distribution defined asD t̂ N,a5 t̂ N,(12a)

2 t̂ N,a where 0,a,1/2 and generallyGN( t̂ N,p)5p,0,p
,1, can be seen to satisfy

FIG. 1. Cumulative distribution function,GN(t), for LLS bundle
failure time for fiber exponentr52, and bundle sizesN
58,16,32,64, . . . ,1 048 576~1024 replications each!. Times shown
in all figures are dimensionless.

FIG. 2. GN(t) under the same conditions as in Fig. 1 excepr
54.
02150
e

D t̂ N,a; lnF ln~a!

ln~12a!G , ~4.52!

and so is independent ofN. Earlier, we argued in Eq.~3.8!
that Var@TN#5121/N.

For very smallr we conjecture that the lifetime distribu
tion of the bundle will approximately follow

GN~ t !'expH 2expF2S t2E@TN#

AVar@TN#
D G J . ~4.53!

The idea is that the lifetime is dominated by some long-liv
cluster of fibers, which grows slowly in size asN increases
but not enough to compensate for the extra load it eventu
must support as fibers fail. This will be investigated usi
computational simulations.

We turn our attention to a detailed comparison betwe
the statistical failure theories for LLS and ELS and exa
Monte Carlo simulations. Computational methods needed
obtain these results in hours-to-days, rather than decade
centuries, are provided in the Appendix.

FIG. 3. GN(t) under the same conditions as in Fig. 1 excepr
510, the largestN is 16 384 and the replications are 262 144.

FIG. 4. GN(t) under the same conditions as in Fig. 1 excepr
520.
7-10



is

re

s

t
56

,
th
tto
l

ty

s

dle

a
gl

or

,
fiber
cts
e

nd
the

ts.
ly
ese

the
rior
o

or

-

or-
size
he
with
of
25
hile
tial

rves
3.

a
ue
n-

e is
ents
i-
dle

s o
n

TIME-DEPENDENT FIBER BUNDLES WITH LOCAL . . . PHYSICAL REVIEW E 63 021507
V. COMPUTATIONAL RESULTS

In all the results that follow, we have taken the loadL to
be unity, with no loss in generality, sincet can be replaced
by tLr to recover results for arbitraryL.

A. Bundle lifetime behavior for rÌ1

Figures 1–4 show empirical plots of the cumulative d
tribution function~c.d.f.! for bundle lifetime,GN(t), versust
for the casesr52, 4, 10, and 20. The coordinates a
Weibull coordinates wherein ln$2ln@12GN(t)#% is plotted
versus ln(t) on a linear scale@though for convenience a
log10(t) scale has been used#. Each figure has bundles size
N58,16,32,64, . . . ,1 048 576with 1 024 Monte Carlo repli-
cations each, except for Fig. 3 which has maximumN
516 3845214 but with 262 1445218 replications each
~though due to the huge size of the data set, in each curve
first 1024 points were plotted but only one out of every 2
points thereafter!. For convenience, we will refer to
1 048 5765220 fibers in a bundle as a million fiber bundle
and 1 0245210 as a thousand realizations. In all cases
deep tails have been truncated so as not to show the bo
seven points~12 in Fig. 3! in order to subdue their typica
erratic behavior.

Clearly all cases ofr show a size effect as the probabili
of failure increases withN. If GN(t) were truly a Weibull
distribution, 12exp@2(t/t0,N)aN# with shape parameter,aN ,
and scale parameter,t0,N , the plots would be straight line
with slopeaN and value 0 at ln(t0,N). The lack of linearity in
all cases~except perhaps for the smallest and largest bun
for r520) indicates thatGN(t) is not Weibull. Note, how-
ever, that locally the slopes of these curves are gener
multiples of one, the Weibull shape parameter for a sin
fiber element under fixed load, according to Eq.~2.8!. The
exception is the upper part of the lifetime distributions f
very small bundles in the case ofr510, and 20, where the
slope is clearly unity even near the median lifetime~corre-

FIG. 5. Cumulative distribution functionsWN(t) ~solid lines! on
Weibull coordinates, which are reverse weakest link transform
GN(t) in Fig. 1 for r52. The dotted line is the approximatio

Ŵ(t), and the dashed line is the approximationW* (t) to the true
characteristic distribution functionW(t).
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sponding to20.367 on the vertical scale!. This suggests that
except perhaps for the shortest-lived bundles, once one
fails the whole bundle quickly fails so that the bundle a
like a chain of N fibers whereby the median would b
roughly 1/N, as is observed in the plots.

In the deep tails of the distributions, convergence a
even crossovers for the smallest bundles may occur if
number of replications is sufficiently large~i.e., low enough
probability level! because of boundary and finite size effec
For very smallN, bundle failures in the deep tails are like
to begin with fibers failing at or near the bundle edges. Th
then generate clusters that rapidly propagate across
bundle since the load is shed totally to the nearest inte
survivor rather than being divided equally between tw
flanking survivors.

The lower tail crossing effect is very apparent in Fig. 1 f
r52. A Weibull tangent to the lower tail of theN532 fiber
bundle~at probability level 1/150! has a Weibull shape pa
rameter of approximately 10, whereas that for theN58
bundle is approximately the same number, 8. The latter c
respondence is to be expected once the critical cluster
for a bundle reaches its width. This limiting aspect of t
slope is the cause of the crossing. For the largest bundle
r52, the Weibull tangent has a much larger exponent
about 25 in the deep tail, so a cluster of approximately
breaks is required to nucleate a catastrophic crack. W
there is noticeable convergence in Figs. 2–4, the poten
lower tail crossing effect is not apparent because the cu
do not go deep enough into the lower tails, even in Fig.
For example in Fig. 2 wherer54, the curve for the million
fiber bundle is roughly Weibull with shape parameter~slope!
4. Thus the lifetime is approximately determined when
critical cluster of four adjacent breaks is formed, and tr
crossovers will not occur since such a cluster is well co
tained within the smallest bundles. In Fig. 3 forr510,
which goes much deeper into the lower tails, convergenc
again apparent, but again not true crossing. Weibull tang
to the deep tails forN58 and 16 have exponents of approx
mately 3, which again is considerably less than the bun

f

FIG. 6. WN(t) ~solid lines!, Ŵ(t) ~dotted line!, and W* (t)
~dashed line! under the same conditions as in Fig. 5 exceptr54
andGN(t) comes from Fig. 2.
7-11
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widths. In Fig. 4 with r520, when N is very small the
Weibull tangent has slope near unity. Thus in this probabi
range, once one fiber fails the whole bundle fails. WhenN is
large ~say one million fibers!, the Weibull exponent is 2, so
two adjacent failures fail the bundle. In these cases the
pirical plots are approximately Weibull except for the midd
sizes where there is bilinear behavior, discussed later.

Figures 5–8 show plots of the reverse weakest link tra
form, WN(t)512@12GN(t)#1/N, of the data in Figs. 1–4
on Weibull coordinates. The idea is that ifWN(t) converges
to a limit W(t) as N grows large, thenGN(t)'12@1
2W(t)#N. On Weibull coordinates, the differences betwe
theGN(t) for eachN would appear as vertical shifts of mag
nitude lnN, which is what is seen in Figs. 1–4. Except f
small bundle and boundary effects, these clearly disappe
Figs. 5–8. Also shown are the two approximations to
characteristic distribution function,Ŵ(t) and W* (t), given
by Eqs. ~4.26! and ~4.13!, respectively, where the latter i
based on time to critical cluster formation. Forr.4 these

FIG. 7. WN(t) ~solid lines!, Ŵ(t) ~dotted line!, and W* (t)
~dashed line! under the same conditions as in Fig. 5 exceptr510
andGN(t) comes from Fig. 3.

FIG. 8. WN(t) ~solid lines!, Ŵ(t) ~dotted line!, and W* (t)
~dashed line! under the same conditions as in Fig. 5 exceptr520,
whereGN(t) comes from Fig. 4.
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two versions of the trueW(t) perform very well with the one
based on time to critical cluster formation being more co
servative. For higherr values, neither approximation is su
ficiently conservative, i.e., both overestimate the time
achieve a given probability of failure by roughly a consta
factor somewhat greater than one. This occurs because m
possible failure sequences, such as linking of smaller c
ters, are not accounted for. Forr52, one is too conservative
and the other not conservative enough, but the error is
than might first appear as the time scale is greatly expan

In Figs. 5–8 the time difference between the two versio
Ŵ(t) and W* (t) is essentially the additional time require
for catastrophic growth of the critical cluster. For largerr the
time difference is slight compared to the time to form t
critical cluster, but forr52 the time difference is by a facto
of about 2.5, as can be seen also from Eq.~4.31!. This factor
rapidly grows to` asr→1 from above. Forr510 the dif-
ference is only about 20% in the deep tail@slightly less than
the difference betweenW* (t) and the empiricalW(t)#. Thus
for r.4, these estimates give good agreement with the
W(t), which is quite reasonable even forr52. In Fig. 8
there is clearly bilinear behavior in the empirical plots f
r520, and the Weibull segments have slopes exactly
and two, respectively, consistent with the correspond
critical cluster sizes of one and two.

A key conclusion from Figs. 1–8 is that forr.1, the
lifetime distribution has the basic weakest-link structu
GN(t)512@12W(t)#N'12exp@2NW(t)#. Thus LLS be-
havior differs from that under ELS, where the lifetime
asymptotically Gaussian, Eq.~3.11!, with mean, Eq.~3.3!,
which converges to a finite limit 1/r asN→`.

Figures 9–11 show plots of the empirical mean, stand
deviation, and coefficient of variation of lifetime~standard
deviation/mean!, as a function ofN on log-log coordinates
for r52, 4, 10, and 20. The plots are based on 1024 re
cations each forN58,16,32,64, . . . ,1 048576. The mean
does not follow the ELS mean, Eq.~3.3!, where the lifetime
approaches 1/r for largeN, though forr52, the difference
is minor for smallN. The mean also does not follow a pow

FIG. 9. Mean time to bundle failure, E@TN#, versus LLS bundle
sizeN with 1024 replications forr51/10, 1/4, 1/2, 1, 2, 4, 10, and
20.
7-12
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law in N, but ultimately scales asa@(r21)/lnN#(r21), ac-
cording to Eq.~4.32!, though the error term is important eve
for the largest values ofN. The standard deviation ultimatel
scales asa@(r21)/lnN#r, and the coefficient of variation
being approximately the inverse of the critical cluster s
k* , ultimately scales as (r21)/lnN according to Eq.~4.17!.
For r520, the rapid drop in the coefficient of variation
aboutN53000 is not an artifact. In fact the coefficient o
variation is approximately 1 for 1<N<2000 corresponding
to k* 51, and becomes 1/2 over roughly 5 000<N
<1 000 000, corresponding tok* 52. This feature is consis
tent with the kink observed in Fig. 8. In essence, these va
of N are too small for the large scale trend to take over. T
LLS standard deviation also behaves very differently fro
the corresponding ELS one that decays as 1/AN, Eq. ~3.5!.

Figure 12 shows plots of empirical fiber failure times ve
sus fraction of failed fibers in a single LLS bundle with 40
fibers ~solid lines! andr52. Also shown is this fraction as
calculated from ELS theory, Eq.~3.4! ~dotted lines!. Note
that LLS behavior diverges from ELS behavior as LL

FIG. 10. Standard deviation of time to bundle failure, SD@TN#,
versus LLS bundle sizeN under the same conditions as in Fig. 9

FIG. 11. Coefficient of variation of time to bundle failure
CV@TN#, versus LLS bundle sizeN under the same conditions as
Fig. 9.
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es
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shows the rapid collapse due to increasing local stress
centrations around a cluster that becomes catastrophic
about 1/4 of the fibers fail. If the bundle size were increas
by orders of magnitude, ther52 curve would be the same a
a very small fraction of failures but would flatten before t
fraction 1/4 as the bundle failed earlier due to the size effe
These effects would be even more pronounced for larger
and the critical fraction would decrease sharply.

B. Bundle lifetime behavior for 1Õ2ÏrË1

Figures 13 and 14 show empirical plots of the c.d.f. f
bundle lifetime,GN(t), versus normalized timetnorm, for the
casesr50.5 and 0.75, respectively. We employ ‘‘Gaussi
coordinates,’’ i.e., the ordinate is scaled so that a norma
Gaussian distribution will appear to be a straight line. Mo
over, we normalized the lifetime data, by subtracting t
sample mean and dividing by the sample standard deviat

FIG. 12. Empirical fiber failure times versus fraction of faile
fibers in a single bundle withN54096 fibers. Solid lines are fo
LLS bundles and dotted lines are for ELS bundles.

FIG. 13. Cumulative distribution functionGN(t) for LLS bundle
failure time plotted on Gaussian coordinates versus normal
bundle failure time,tnorm ~actual time minus sample mean then d
vided by sample standard deviation! for r50.5 and bundle sizes
N58,16,32,64, . . . ,1 048 576~1024 replications each!.
7-13
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for eachN. The scaledtnorm, therefore, has zero mean an
unit variance. For r50.75, the bundles sizes wer
N58,16,32,64, . . . ,16 384 with 16 384 replications each
and forr51/2 the bundle sizes were 8,16,32, . . . ,1 048576,
but with 1024 replications each. If the distributions,GN(t),
were truly normal, on these Gaussian coordinates they wo
overlay each other onto one straight line corresponding
zero mean and unit standard deviation. In both cases,
empirical c.d.f.’s clearly approach such a Gaussian distri
tion as N increases. Though not shown, this result is a
seen forr51 as predicted by theory since ELS and LL
have the same asymptotic Gaussian lifetime behavior.
cording to ELS theory the lifetime is also asymptotica
Gaussian forr50.75, but only approximate arguments ha
been given to suggest that this also holds under LLS.
r50.5, no theoretical proof exists to show that either ELS
LLS lifetime is indeed asymptotically Gaussian.

Figures 9–11 show the mean, standard deviation, and
efficient of variation of lifetime for 1/2,r,1. For r51,
both ELS and LLS bundles have mean exactly one for aN
and standard deviation decreasing as 1/AN, as seen in the
empirical plots. For 1/2,r,1, LLS was argued earlier to
have very similar behavior to ELS but with LLS producin
slightly longer lifetimes. Under ELS the mean, standard
viation, and coefficient of variation were given, respective
by Eqs.~3.3!, ~3.9! @based on Eq.~3.5!#, and~3.10!. Though
not shown in Fig. 9, forr50.75 the mean under LLS wa
found to be about 8% larger than under LLS. The stand
deviation was found empirically to decrease for largerN
~above 16 384! as N20.4709 with a regression coefficient o
0.999 85, which is very close to theN21/2 scaling behavior of
ELS, though LLS values were consistently about 36% lar
for eachN. It is not entirely clear that the LLS exponent
indeed 1/2 whenr50.75, and finite size effects are likel
only to affect the third decimal place. Forr51/2 the mean
under ELS still follows Eq.~3.3! and thus has a largeN limit
of 2. Figure 9 shows that the LLS empirical mean is on
slightly larger than 2 by perhaps 10%. On the other hand
Eq. ~3.9! @based on Eq.~3.6!# the ELS standard deviation i
approximatelyA(ln N)/(NL), which is a departure from tha

FIG. 14. GN(t) under the same conditions as in Fig. 13 exce
r50.75, the largest bundle has 16 384 fibers and the numbe
replications is 16 384.
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for r.1/2. Under LLS, however, careful study of the em
pirical standard deviation forN516 384– 1 048 576 show
that a power law with exponent 0.4042 provides a visib
much better data fit~regression coefficient 0.999 66! than
does this ELS result. Using all data fromN58 upward also
yields an excellent fit with exponent changed trivially
0.3871. Thus a subtle but fundamental difference betw
ELS and LLS clearly emerges for the transition val
r51/2.

Figure 12 shows plots of empirical fiber failure times ve
sus fraction of failed fibers in an LLS bundle ofN54096
fibers~solid lines! for r50.5, 0.75, and 1. Also shown is th
corresponding result, Eq.~3.4!, from ELS theory ~dotted
lines!. As expected ELS and LLS behavior are close to ide
tical. These curves would remain unchanged for largerN.
Figures 15 and 16, corresponding tor50.5 and 0.75, respec
tively, show plots of the empirical fiber failure times in a
actual LLS bundle of 4096 fibers~horizontal axis! against the
times anticipated from ELS theory for the same fraction
failed fibers in a large bundle, Eq.~3.4!. As more and more
fibers fail, fiber failure times in LLS bundles become long
than those in ELS bundles by a modest amount, and
effect becomes more pronounced asr decreases from 1
down to 1/2. Not shown is the corresponding plot forr51
which essentially is a straight line with slope one.

C. Bundle lifetime behavior for 0ËrË1Õ2

Figures 17 and 18 show two empirical plots of the c.d
for bundle lifetime,GN(t), versus standardized timet for the
caser50.1 and bundle sizesN58,16,32,64, . . . ,1 048576,
each with 1024 replications. In Fig. 17 the lifetime data a
normalized by subtracting out the respective sample me
and dividing by the respective sample standard deviati
and then plotted on Gaussian coordinates. Clearly the em
cal c.d.f.’s do not approach a Gaussian distribution asN in-

t
of

FIG. 15. Predicted fiber failure times,tpred, in a large ELS
bundle versus empirical fiber failure times,texpt, observed in an
LLS bundle with 4096 fibers andr50.5. Times were evaluated a
equivalent fractions of failed fibers in the bundle.
7-14
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creases, unlike forr.1/2. In Fig. 18, the normalized lifetime
data is plotted on the coordinates of the extreme va
double exponential form, Eq.~4.50!, as motivated by the
caser50; that is 2 ln@2ln GN(t)# is plotted versust. Re-
markably the data yield a near straight line fit asN grows
large. ~Small upward bias in the extreme lower and upp
tails results from our choice of vertical plotting positionsi /N
in graphing.! Although not shown, results forr50.25 are
nearly identical.

Figures 9–11 also show plots of the empirical mean, st
dard deviation, and coefficient of variation of lifetime as
function ofN on log-log coordinates. The plots are based
1024 replications each forN58,16,32,64, . . . ,1 048576.
For 0,r,1/2, the ELS mean again follows Eq.~3.3!, and so
has a largeN limit 1/r, though the deviation decays only a
N2r. The LLS empirical means forr50.25 and 0.1 atN

FIG. 16. Predictedtpred versus empiricaltexpt just as in Fig. 15
exceptr50.75.

FIG. 17. Cumulative distribution function,GN(t), versus nor-
malized bundle failure time,tnorm ~actual time minus sample mea
then divided by sample standard deviation! plotted on Gaussian
coordinates for r50.1 and LLS bundles with N
58,16,32,64, . . . ,1 048 576fibers ~1024 replications each!.
02150
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51 048 576 are about 4.1 and 7.9, which exceed the E
values by roughly 5%. By Eq.~3.7! and Eq.~3.9! the ELS
standard deviation scales for large bundles asN2r. Power-
law fits to the LLS data fromN516 384–1 048 576 gave
1.7129N20.250 44 and 1.3872N20.100 31 so the exponents ar
almost identical to the exact ELS values20.25 and20.1,
respectively. The LLS standard deviations, however,
about 20% and 11% higher than for ELS. Forr50, ELS
and LLS are identical, and for largerN the mean grows as
ln N and the standard deviation remains fixed of order on

Figure 12 shows plots of empirical fiber failure times ve
sus fraction of failed fibers in an LLS bundle of 1024 fibe
~solid lines! and for r50.1 and 0.25. Also shown is th
result, Eq.~3.4!, calculated from ELS theory~dotted lines!.
As expected, ELS and LLS behavior are close to identi
and would remain so for even largerN. Figures 19 and 20
for r50.1 and 0.25, respectively, show plots of the empiri

FIG. 18. GN(t) under the same conditions as in Fig. 17 exce
on coordinates of the extreme value, double exponential distr
tion.

FIG. 19. Predictedtpred versus empiricaltexpt just as in Fig. 15
exceptr50.1.
7-15
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fiber failure times in an LLS bundle of 4096 fibers~horizon-
tal axis! against the times anticipated from ELS theory, E
~3.4!. Forr50.25, as more fibers fail, the LLS bundle failu
times lag those under ELS by a modest amount, but less
for r51/2. Whenr50 the lagging appears to turn into lea
ing, but this happens for this particular realization but not
general since the mean lifetime is greater under LLS, tho
the variability is somewhat larger~so such realizations ar
more common!. Note that asr decreases, the last few fibe
failures increasingly occupy a larger fraction of the over
lifetime, which results in breakdown of Gaussian lifetim
behavior as the averaging effect in summing interfiber fail
times is lost.

VI. DISCUSSION

The LLS model we have considered is virtually identic
to that of Tierney@15,17# and Phoenix and Tierney@16#. We
have assumedb51, which has allowed some nonessent
simplifications in the analysis and computations. These
thors only considered the regimer.1, but we have investi-
gated also the regimes 0,r<1. In Sec. IV, for the case
r.1, where brittle cracklike behavior prevails we were ab
to develop explicit, closed-form approximations for the ch
acteristic distribution functionW(t) and related quantities
such as the critical cluster sizek* and the dependence o
bundle lifetime onN. For 0,r<1 we also demonstrate
that LLS is very close to ELS in behavior with similar sca
ings for the mean and standard deviation. In fact,r51 was
found to be a transition value where the bundle lifetime d
tributions are the same and Gaussian for largeN ~though
with different spatial patterns of failures!. While this Gauss-
ian lifetime behavior appears to persist down tor51/2, we
demonstrated computationally that LLS and most likely E
do not have Gaussian lifetime behavior for 0,r,1/2, but
have behavior related to the double-exponential, extre
value distribution for the maximum of independent and ide
tically distributed exponential random variables but with d

FIG. 20. Predictedtpred versus empiricaltexpt just as in Fig. 15
exceptr50.25.
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ferent, known forms for the mean and standard deviation
Our model and some of the results also have close c

nection to the models of Gotlibet al. @37#, and of Curtin and
coworkers@39–42# for failure in a 2D lattice where failure
clusters may wander somewhat in 2D. In their model, ho
ever, the stress concentrations around long linear cluster
breaks scaled as the square root of the cluster length ra
than the length itself, thus introducing the exponent 1
~Their model also had longer range stress redistribution
creasing roughly as the21/2 power of distance from the
cluster tip.! As a result, our transition valuer51 is moved
up to r52, a value identified by Curtin and coworke
@41,42# who also report percolationlike failure forr<2 but
without the explicit mathematical connection to ELS that w
have established forr<1. Also, Curtin and coworkers did
not obtain the power prefactor we have determined in
estimates ofW(t). This prefactor is important, and neglec
ing it may be responsible for some of the disagreement
tween their theory and simulation. Curtin and coworke
@41,42# also have discussed the difference between the t
to development of a critical cluster versus the time to fin
failure, which includes the additional time the cluster tak
to become catastrophic. They refer to this time difference
a rigid shift involving the factor 2/r whereas we find that it is
primarily a scale factor in the lifetime distribution, in ou
case approximately 12p2/(6r) rather than 121/r as would
occur following their approach. In our case the version ba
only on time to critical cluster formation actually behav
better in comparison to the simulation results.

The form of the lifetime distribution bears close rese
blance to the form found in static strength as obtained
Phoenix and Beyerlein@22# and Wu and Leath@35#. In fact,
upon applying an increasing load history,L(t)5Bt,t>0,
and taking the bundle strength to be the loads at the time of
failure, it can be shown@16# that the distribution function for
bundle strength is obtained from that for lifetime
GN$sr11/@B(r11)#%. ~In fact, under power-law breakdow
any positive applied bundle load history can be treated i
similar way.! Thus in Eq.~4.26!, the exponent ons becomes
(r11)/(r21) as compared to unity in the static model
Phoenix and Beyerlein@22#. They point out an apparent tran
sition to ELS behavior for small values of the Weibull sha
parameterr̂ for fiber strength, which corresponds tor11 in
the present case. Thus the current transition atr51 corre-
sponds tor̂52. This transition is more explicit in the prese
case because of the appearance of 1/(r21) in the exponent
on time or stress. It holds for all volumes, whereas in
strength case, reverting to LLS-like scaling may eventua
occur for large enough volumes. This difference in the ha
ness of the transition to ELS behavior between strength
lifetime requires more study.

We conclude that the lifetime distribution is much mo
sensitive to the form of the localized fiber stress redistrib
tion mechanism forr larger than a critical value,rc , than
below it, and that there will be a drastic change in behav
through the transition. This critical value is expected to va
with b, when the model is extended to permit values ofb
other than unity, as we have assumed.
7-16
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Finally, we note again the importance of blending phy
cal theory with computational methodology in order to ide
tify and verify the scalings that emerge.
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APPENDIX: MERGE-SORT ALGORITHM
FOR MEGAFIBER BUNDLE SIMULATION

As mentioned, several investigations of time-depend
fiber bundle or network behavior under localized load sh
ing have been reported in the literature. Their associa
simulations were limited typically to'103–104 fibers and
approximations were often introduced to reduce the com
tational burden. While computer CPU speeds have since
creased by an order of magnitude, present day compu
remain incapable of significantly expanding the compu
tional size to that required to better understand the sca
features of the underlying physical problem. The LLS ru
we have used simplifies the analysis, but computational
stacles remain.

At the outset, we believed that a wholesale reconstruc
of the computational algorithms had the potential to dram
cally improve our ability to undertake very large simulation
When an individual fiber fails, the computational cost of c
culating the remaining lifetimes of its nearest neighbors
very small, and requiresO(N) operation counts for the entir
system ofN fibers. The overwhelming expense has resul
from two tasks: The first is to identify the nearest survivi
neighbors onto which the load of the failed fiber must
placed; the second is to establish which of all the remain
survivors will be the next to fail. Each of these tasks can
shown to requireO(N2) operations. Thus to proceed from
simulations describing thousands of fibers to simulations
scribing millions, a millionfold increase in the operatio
count was anticipated. Using data management conc
from computer science we now show how the first task
be reduced to one requiring onlyO(N) operations and the
second to one requiringO(N ln N).

From a physical standpoint, at any given dimensionl
time t we can describe our array of fibers by three st
variables per fiber. First, we know the status of thei th fiber
in terms of the stateSi , which is 0, if it is broken, and 1, if
it is intact.

Second, we know the current loadl i applied to that fiber,
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if intact. Third, we know the timet i when that fiber is pro-
jected to fail, assuming that its load does not change. Sho
the load applied to thei th element change tol i8 at timet due
to failure of a neighbor, we have a ruleR for calculating a
revised projected lifetime t i8 , namely t i85t1R(t i

2t,l i ,l i8), which replaces the previous value. In the pow
law scheme, this rule has the form of a contraction mapp

t i85t1~ t i2t !S l i

l i8
D r

. ~A1!

Apart from the LLS rule, this equation describes the on
‘‘physics’’ in the problem.

Turning to the data management issues of the two ta
above, we assume that theN fibers, indexed from left to right
by i 51,2, . . . ,N have initial lifetimest i , which are indi-
vidual independent deviates~i.i.d.! assigned from some well
defined distribution function, in the present case the Weib
distribution, Eq.~2.8!, with b51 andL51. Moreover, we
assume that their initial loadsl i have been assigned, in th
present case uniformly with valueL51. We assume tha
their respective statesSi are unity. For reasons encountere
shortly, it is advantageous to employ fiber bundles who
size is an integral power of 2, i.e.,N52n, where n is an
integer.~This can be circumvented through a scheme of a
ing fictitious failed fibers with benign load-sharing influ
ence.!

We assume that when an interior surviving fiber fails,
load is redistributed equally onto its nearest surviving nei
bors, one on its left and one on its right. When a bound
surviving fiber fails it transfers all its load to the neare
interior survivor. See Sec. II A for complete details.~Other
boundary schemes, such as periodic boundary conditions
an easy adaptation.! The immediate problem is to find thes
nearest surviving neighbors using the fewest possible op
tions.

Next we create two integer arrays whoseN elements are
pointers associated with theN fibers. For convenience, w
refer to these as forward and backward pointers,f i andbi .
We also define functions based on these pointers, i.e.,

f ~ i !5 f i and b~ i !5bi . ~A2!

Simply stated, for thei th fiber, f i identifies its nearest sur
viving neighbor in the forward~or right! direction, andbi
identifies its nearest surviving neighbor in the backward~or
left! direction. To locate the boundary or terminal survivo
~whose load sharing rule differs from interior survivors! we
introduce a ‘‘flag.’’ For the left and right terminal survivors
we setbi50 and f i50, respectively. This indexing schem
is illustrated in Fig. 21. Initially, for all interior fibers for
whom SiÞ0, we setf i5 i 11 andbi5 i 21.

For themth fiber, if it is an interior survivor the associ
ated entries in the up-to-date pointer arrays identify its ri
and left nearest survivors asf (m) and b(m), respectively.
When themth fiber fails, we need to modify the stored poin
ers associated with these survivorsf (m) andb(m). The for-
ward pointer for fiberb(m) must becomef (m) ~rather than
7-17
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m) and the backward pointer for fiberf (m) must become
b(m) ~rather thanm). Thus we make the assignments,

f @b~m!#5 f ~m!,

b@ f ~m!#5b~m!. ~A3!

For terminal survivors, if fiberm was the left-most surviving
fiber, then we set

b@ f ~m!#50, ~A4!

and if it was the right-most survivor we set

f @b~m!#50. ~A5!

In so doing, elementm is effectively eliminated from all
future computations, and of course,Sm is set to zero. Thus by
simply updating these two pointer arrays as fibers fail,
have essentially eliminated the task of finding the nea
survivors and this task has been relegated toO(N). We can
also update the loads on these surviving fibers and use
contraction mapping, Eq.~A1!, to revise their projected life-
times. Our system of pointer arrays is closely related to w
is called a ‘‘doubly linked list’’ ~see Cormenet al. @56#! in
the computer science literature.~This scheme can be ex
panded to consider more distant surviving neighbors un
more general local load-sharing rules.!

We now turn our attention to finding the next fiber amo
the survivors to fail. Scanning the entire array would ta
O(N) operations, which must be performed as each of thN
fibers fails, making this part of the problemO(N2). We now
show how to avoid the scan and to identify the next fiber
fail in only O(log2 N) operations. This is closely related t
the task of finding a telephone number in a telephone di
tory whoseN elements are already alphabetically ordered
sequential search would takeO(N) operations. A better ap
proach is to ‘‘divide and conquer’’ where a hierarchy
simpler problems is solved. In the telephone number a
ogy, we first ask: ‘‘Is the number in the first half of th
telephone book?’’ If the answer initially is yes, we henc
forth ignore the second half and repeat the question. We
our number inO(log2 N) operations.

FIG. 21. Pointer arrays employed in identification of survivors
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The preceding discussion illustrates that most of
O(N2) pairwise operations are redundant once we have s
information available as to the order of subsets of the co
plete set of fibers. The avoidance of redundant computat
and making algorithms ‘‘computationally irreducible’’ i
widely employed in other disciplines. For example, t
Cooley–Tukey fast Fourier transform algorithm applied
data sets withN elements reduces the otherwiseO(N2) op-
eration task of performing a Fourier transform toO(N ln N)
operations. Newman and Gabrielov@45# explored a hierar-
chically organized set of fiber bundles, reducingO(2N) op-
erations toO(N2) operations, whereN was the number of
levels in the hierarchy. Newmanet al. @46–49# also devel-
oped computationally irreducible algorithms in applicatio
to fiber bundle problems.

The class of computer science algorithms for ranking~by
some criterion, such as failure times! of a list is often called
a ‘‘sort-merge’’ algorithm, and it can be adapted to situatio
where the criterion is constantly being updated, but wh
other information is available. So-called ‘‘heap-sort’’ met
ods are theoretically more efficient for relatively uniform
distributed random data, but become less efficient and ad
tageous if substantial clustering in the data occurs. T
scheme we describe below is not particularly efficient
terms of memory-utilization, but is simpler to program a
more intuitive than memory-optimized dynamic sort-mer
algorithms. Cormenet al. @56# offers an encyclopedic con
temporary view of sorting and search algorithms.

We consider establishing a hierarchical tableau as sh
in Fig. 22. It is also worthwhile visualizing this as a bina
tree where each element in the tableau can be regarded
node connecting ‘‘parents’’ to ‘‘children’’ and where chil
dren at the same level in the hierarchy of a given parent~or
grandparent, etc.! are regarded as ‘‘siblings.’’ The lowest o
‘‘0’’ level of the tree corresponds with the original projecte
failure times~calculated as though the fiber loads,l i , re-
main as their initial valuesL51), now designated via

t0,i5t i , i 51, . . . ,N, ~A6!

with a similar tableau established to store the state varia
informationSi .

FIG. 22. Hierarchical structure employed in identification of p
oritization of failures.
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Each pair of elements at the bottom of this tree co
together to form a new node. For example, assuming thai is
odd, we construct fromt0,i and t0,i 11 a node

t1,(i 11)/2[min~ t0,i ,t0,i 11!. ~A7!

~In this expression and in what follows, we will assume th
the quotient of two integers preserves only the integer pa!
Similarly, we find for the state tableau that

S1,(i 11)/2[S0,i1S0,i 112S0,i3S0,i 11 , ~A8!

implying that a parent of the two children is intact if at lea
one of the subordinate elements is intact. The two preced
equations, that take us from level 0 to level 1, can also
used to take us from levelp to level p11, where p
50,1, . . . , log2 N. Thus tp,i and Sp,i describe the element
within the range 112p21i to 2pi ; Sp,i is one only if at least
one fiber in the subset is still intact whiletp,i describes the
earliest time to failure in that subset. It is also useful, a
modest increase in memory utilization, to store additio
information at each node as we ascend the tree. For exam
it is useful to know which elementi at the lowest level cor-
responds to the position of the fiber with the earliest failu
time contained within that range of elements.~In fact, if we
store only that index information as a pointer array, we av
the need to store thetp,i tableau, thereby saving significan
memory with a barely noticeable increase in execution tim!
We achieve this by constructing an additional binary t
M p,i paralleling the role of the treetp,i . While tp,i identifies
the time for the first failure associated with the 2p elements
on that branch,M p,i identifies its corresponding location. A
of the above is readily established by induction.

The initial setting up of the tableaus requiresO(N) op-
erations, which is essentially the same as the number of
erations required to identify the most shortlived fiber. Ho
ever, once set up, the tableaus eliminate the need to sca
list of surviving fibers, and operationally we need only go
the tree employingO(ln N) operations instead of across it
O(N) operations. To understand this, consider what mus
done when themth fiber has its projected lifetime reduce
02150
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through load redistribution, or when it fails. Then, the fibe
designated 23@(m11)/2#21 and 23@(m11)/2# corre-
spond with the original fiber and its sibling in the tree. W
now compute the lifetime and state of the parent of this p
namely t1,(m11)/2 and S1,(m11)/2. ~We should also store a
this level of the hierarchy, as observed earlier, the location
the surviving fiber, if any, inM1,(m11)/2 contained in the
original pair.! Here, we have updated the status of two ch
dren in order to obtain the status of their parent; this proc
can be repeated solely by moving up the tree-tableau
working along its branches instead of across its branc
at the lowest level. The other branches in the tree rem
unaffected.

We note that when a fiber fails, we may not need to
completely up all branches of the tree. To see why, we re
that we had previously identified that particular fiber as be
the next to fail and, therefore, all of the timing, state variab
and position information stored in the tableaus are based
its imminent failure. However, when the projected times
failure of its nearest neighbors are reduced, there genera
a low probability that either of these neighbors will becom
the next fiber to fail. Thus it is highly advantageous to ma
the implementation of this algorithm aware of the possibil
that the updating of the tableaus need not continue all
way to the top. Eliminating such unnecessary operation
analogous to ‘‘asynchronous’’ schemes encountered in c
puter science and makes this implementation of the se
algorithm competitive with standard implementations
sort-merge algorithms~Cormenet al. @56#!.

While simple in principle, our algorithm demands su
stantial care in developing its relatively complex logic. How
ever, in execution, this logic requires remarkably little co
putational overhead. The theoretical speed enhanceme
O(N/ log2 N) is directly realized, losing only a factor of sev
eral in its achievement. For our ‘‘megafiber’’ or 220

51 048 576 fiber simulation, we could execute a single re
ization in less than a minute, which otherwise would ha
required several weeks. Ten-thousand realizations requ
several days, in contrast to an estimated century-long
The algorithms presented here made it possible to exp
large fiber bundle sizes over large numbers of realizations
desired.
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